EstateGuru / app.py
pathakDev10's picture
Add application file
6ce998e
raw
history blame
960 Bytes
from fastapi import FastAPI
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.llms import HuggingFacePipeline
import torch
app = FastAPI()
# --- LLM Initialization using Hugging Face ---
model_id = "Qwen/Qwen2.5-1.5B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16
)
generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=256,
temperature=0.3,
)
llm = HuggingFacePipeline(pipeline=generator)
# Example endpoint using the new llm
@app.post("/query")
async def post_query(query: str):
# Create a simple prompt structure
prompt = f"Answer the following query:\n\n{query}\n"
# Get the response from the LLM
response = llm(prompt)
return {"response": response}
# (Keep your WebSocket endpoint and other code mostly unchanged)