Spaces:
Sleeping
Sleeping
Commit
·
50fadef
1
Parent(s):
6e41231
changes
Browse files
app.py
CHANGED
@@ -1,34 +1,633 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
temperature=0.3,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
)
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# Example endpoint using the new llm
|
26 |
@app.post("/query")
|
27 |
async def post_query(query: str):
|
28 |
-
|
29 |
-
|
30 |
-
# Get the response from the LLM
|
31 |
-
response = llm(prompt)
|
32 |
return {"response": response}
|
33 |
|
34 |
-
|
|
|
1 |
+
import uuid
|
2 |
+
import threading
|
3 |
+
import asyncio
|
4 |
+
import json
|
5 |
+
import re
|
6 |
+
from datetime import datetime
|
7 |
+
from fastapi import FastAPI, WebSocket, WebSocketDisconnect
|
8 |
|
9 |
+
# ------------------------ Chatbot Code (Unmodified) ------------------------
|
10 |
|
11 |
+
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
|
12 |
+
from langgraph.graph import StateGraph, START, END
|
13 |
+
# from langchain_ollama import ChatOllama
|
14 |
+
import faiss
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
import pickle
|
17 |
+
import numpy as np
|
18 |
+
from tools import extract_json_from_response, apply_filters_partial, rule_based_extract, format_property_data, estateKeywords
|
19 |
+
import random
|
20 |
+
from langchain_core.tools import tool
|
21 |
+
from langchain_core.callbacks import StreamingStdOutCallbackHandler, CallbackManager
|
22 |
+
from langchain_core.callbacks.base import BaseCallbackHandler
|
23 |
+
|
24 |
+
# ------------------------ Custom Callback for WebSocket Streaming ------------------------
|
25 |
+
|
26 |
+
class WebSocketStreamingCallbackHandler(BaseCallbackHandler):
|
27 |
+
def __init__(self, connection_id: str, loop):
|
28 |
+
self.connection_id = connection_id
|
29 |
+
self.loop = loop
|
30 |
+
|
31 |
+
def on_llm_new_token(self, token: str, **kwargs):
|
32 |
+
asyncio.run_coroutine_threadsafe(
|
33 |
+
manager_socket.send_message(self.connection_id, token),
|
34 |
+
self.loop
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
39 |
+
|
40 |
+
class ChatHuggingFace:
|
41 |
+
def __init__(self, model, token, temperature=0.3, streaming=False):
|
42 |
+
# Instead of using InferenceClient, load the model locally.
|
43 |
+
self.temperature = temperature
|
44 |
+
self.streaming = streaming
|
45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model)
|
46 |
+
self.model = AutoModelForCausalLM.from_pretrained(model)
|
47 |
+
self.pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer)
|
48 |
+
|
49 |
+
def invoke(self, messages, config=None):
|
50 |
+
"""
|
51 |
+
Mimics the ChatOllama.invoke interface.
|
52 |
+
In streaming mode, token-by-token output is sent via callbacks.
|
53 |
+
Otherwise, returns a single aggregated response.
|
54 |
+
"""
|
55 |
+
config = config or {}
|
56 |
+
callbacks = config.get("callbacks", [])
|
57 |
+
aggregated_response = ""
|
58 |
+
|
59 |
+
# Build the prompt by concatenating messages in the expected format.
|
60 |
+
prompt = ""
|
61 |
+
for msg in messages:
|
62 |
+
role = msg.get("role", "")
|
63 |
+
content = msg.get("content", "")
|
64 |
+
if role == "system":
|
65 |
+
prompt += f"<|im_start|>system\n{content}\n<|im_end|>\n"
|
66 |
+
elif role == "user":
|
67 |
+
prompt += f"<|im_start|>user\n{content}\n<|im_end|>\n"
|
68 |
+
elif role == "assistant":
|
69 |
+
prompt += f"<|im_start|>assistant\n{content}\n<|im_end|>\n"
|
70 |
+
|
71 |
+
if self.streaming:
|
72 |
+
# Generate text locally.
|
73 |
+
full_output = self.pipeline(
|
74 |
+
prompt,
|
75 |
+
max_new_tokens=100,
|
76 |
+
do_sample=True,
|
77 |
+
temperature=self.temperature
|
78 |
+
)[0]['generated_text']
|
79 |
+
# Assume the pipeline returns the prompt + generated text.
|
80 |
+
new_text = full_output[len(prompt):]
|
81 |
+
# Simulate token-by-token streaming.
|
82 |
+
for token in new_text.split():
|
83 |
+
aggregated_response += token + " "
|
84 |
+
for cb in callbacks:
|
85 |
+
cb.on_llm_new_token(token=token + " ")
|
86 |
+
return type("AIMessage", (object,), {"content": aggregated_response.strip()})
|
87 |
+
else:
|
88 |
+
# Non-streaming mode.
|
89 |
+
response = self.pipeline(
|
90 |
+
prompt,
|
91 |
+
max_new_tokens=100,
|
92 |
+
do_sample=True,
|
93 |
+
temperature=self.temperature
|
94 |
+
)[0]['generated_text']
|
95 |
+
new_text = response[len(prompt):]
|
96 |
+
return type("AIMessage", (object,), {"content": new_text.strip()})
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
|
101 |
+
# ------------------------ LLM and Data Setup ------------------------
|
102 |
+
# model_name="qwen2.5:1.5b"
|
103 |
+
model_name="Qwen/Qwen2.5-1.5B-Instruct"
|
104 |
+
# llm = ChatOllama(model=model_name, temperature=0.3, streaming=True)
|
105 |
+
llm = ChatHuggingFace(
|
106 |
+
model=model_name,
|
107 |
+
# token=token,
|
108 |
temperature=0.3,
|
109 |
+
streaming=True # or True, based on your needs
|
110 |
+
)
|
111 |
+
|
112 |
+
index = faiss.read_index("./faiss.index")
|
113 |
+
with open("./metadata.pkl", "rb") as f:
|
114 |
+
docs = pickle.load(f)
|
115 |
+
st_model = SentenceTransformer('all-MiniLM-L6-v2')
|
116 |
+
|
117 |
+
|
118 |
+
def make_system_prompt(suffix: str) -> str:
|
119 |
+
return (
|
120 |
+
"You are EstateGuru, a real estate expert created by Abhishek Pathak from SwavishTek. "
|
121 |
+
"Your role is to help customers buy properties using the available data. "
|
122 |
+
"Only use the provided data—do not make up any information. "
|
123 |
+
"The default currency is AED. If a query uses a different currency, convert the amount to AED "
|
124 |
+
"(for example, $10k becomes 36726.50 AED and $1 becomes 3.67 AED). "
|
125 |
+
"If a customer is interested in a property, wants to buy, or needs to contact an agent or customer care, "
|
126 |
+
"instruct them to call +91 8766268285."
|
127 |
+
f"\n{suffix}"
|
128 |
+
)
|
129 |
+
|
130 |
+
general_query_prompt = make_system_prompt(
|
131 |
+
"You are EstateGuru, a helpful real estate assistant. Answer the user's query accurately using the available data. "
|
132 |
+
"Do not invent any details or go beyond the real estate domain. "
|
133 |
+
"If the user shows interest in a property or contacting an agent, ask them to call +91 8766268285."
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
|
138 |
+
# ------------------------ Tool Definitions ------------------------
|
139 |
+
|
140 |
+
@tool
|
141 |
+
def extract_filters(query: str) -> dict:
|
142 |
+
"""For extracting filters"""
|
143 |
+
# llm_local = ChatOllama(model=model_name, temperature=0.3)
|
144 |
+
llm_local = ChatHuggingFace(
|
145 |
+
model=model_name,
|
146 |
+
# token=token,
|
147 |
+
temperature=0.3,
|
148 |
+
streaming=False
|
149 |
+
)
|
150 |
+
system = (
|
151 |
+
"You are an expert in extracting filters from property-related queries. Your task is to extract and return only the keys explicitly mentioned in the query as a valid JSON object (starting with '{{' and ending with '}}'). Include only those keys that are directly present in the query.\n\n"
|
152 |
+
"The possible keys are:\n"
|
153 |
+
" - 'projectName': The name of the project.\n"
|
154 |
+
" - 'developerName': The developer's name.\n"
|
155 |
+
" - 'relationshipManager': The relationship manager.\n"
|
156 |
+
" - 'propertyAddress': The property address.\n"
|
157 |
+
" - 'surroundingArea': The area or nearby landmarks.\n"
|
158 |
+
" - 'propertyType': The type or configuration of the property.\n"
|
159 |
+
" - 'amenities': Any amenities mentioned.\n"
|
160 |
+
" - 'coveredParking': Parking availability.\n"
|
161 |
+
" - 'petRules': Pet policies.\n"
|
162 |
+
" - 'security': Security details.\n"
|
163 |
+
" - 'occupancyRate': Occupancy information.\n"
|
164 |
+
" - 'constructionImpact': Construction or its impact.\n"
|
165 |
+
" - 'propertySize': Size of the property.\n"
|
166 |
+
" - 'propertyView': View details.\n"
|
167 |
+
" - 'propertyCondition': Condition of the property.\n"
|
168 |
+
" - 'serviceCharges': Service or maintenance charges.\n"
|
169 |
+
" - 'ownershipType': Ownership type.\n"
|
170 |
+
" - 'totalCosts': A cost threshold or cost amount.\n"
|
171 |
+
" - 'paymentPlans': Payment or financing plans.\n"
|
172 |
+
" - 'expectedRentalYield': Expected rental yield.\n"
|
173 |
+
" - 'rentalHistory': Rental history.\n"
|
174 |
+
" - 'shortTermRentals': Short-term rental information.\n"
|
175 |
+
" - 'resalePotential': Resale potential.\n"
|
176 |
+
" - 'uniqueId': A unique identifier.\n\n"
|
177 |
+
"Important instructions regarding cost thresholds:\n"
|
178 |
+
" - If the query contains phrases like 'under 10k', 'below 2m', or 'less than 5k', interpret these as cost thresholds.\n"
|
179 |
+
" - Convert any shorthand cost values to pure numbers (for example, '10k' becomes 10000, '2m' becomes 2000000) and assign them to the key 'totalCosts'.\n"
|
180 |
+
" - Do not use 'propertySize' for cost thresholds.\n\n"
|
181 |
+
" - Default currency is AED, if user query have different currency symbol then convert to equivalent AED amount (eg. $10k becomes 36726.50, $1 becomes 3.67).\n\n"
|
182 |
+
"Example:\n"
|
183 |
+
" For the query: \"properties near dubai mall under 43k\"\n"
|
184 |
+
" The expected output should be:\n"
|
185 |
+
" {{ \"surroundingArea\": \"dubai mall\", \"totalCosts\": 43000 }}\n\n"
|
186 |
+
"Return ONLY a valid JSON object with the extracted keys and their corresponding values, with no additional text."
|
187 |
+
)
|
188 |
+
|
189 |
+
human_str = f"Here is the query:\n{query}"
|
190 |
+
filter_prompt = [
|
191 |
+
{"role": "system", "content": system},
|
192 |
+
{"role": "user", "content": human_str},
|
193 |
+
]
|
194 |
+
response = llm_local.invoke(messages=filter_prompt)
|
195 |
+
response_text = response.content if isinstance(response, AIMessage) else str(response)
|
196 |
+
try:
|
197 |
+
model_filters = extract_json_from_response(response_text)
|
198 |
+
except Exception as e:
|
199 |
+
print(f"JSON parsing error: {e}")
|
200 |
+
model_filters = {}
|
201 |
+
rule_filters = rule_based_extract(query)
|
202 |
+
print("Rule-based extraction:", rule_filters)
|
203 |
+
final_filters = {**model_filters, **rule_filters}
|
204 |
+
print("Final extraction:", final_filters)
|
205 |
+
return {"filters": final_filters}
|
206 |
+
|
207 |
+
|
208 |
+
@tool
|
209 |
+
def determine_route(query: str) -> dict:
|
210 |
+
"""For determining route using enhanced prompt and fallback logic."""
|
211 |
+
# Define a set of keywords that are strong indicators of a real estate query.
|
212 |
+
real_estate_keywords = estateKeywords
|
213 |
+
|
214 |
+
# Check if the query includes any of the positive signals.
|
215 |
+
pattern = re.compile("|".join(re.escape(keyword) for keyword in real_estate_keywords), re.IGNORECASE)
|
216 |
+
positive_signal = bool(pattern.search(query))
|
217 |
+
|
218 |
+
# Proceed with LLM classification regardless, but use the positive signal in fallback.
|
219 |
+
# llm_local = ChatOllama(model=model_name, temperature=0.3)
|
220 |
+
llm_local = ChatHuggingFace(
|
221 |
+
model=model_name,
|
222 |
+
# token=token,
|
223 |
+
temperature=0.3,
|
224 |
+
streaming=False
|
225 |
+
)
|
226 |
+
transform_suggest_to_list = query.lower().replace("suggest ", "list ", -1)
|
227 |
+
system = """
|
228 |
+
Classify the user query as:
|
229 |
+
|
230 |
+
- **"search"**: if it requests property listings with specific filters (e.g., location, price, property type like "2bhk", service charges, pet policies, etc.).
|
231 |
+
- **"suggest"**: if it asks for property suggestions without filters.
|
232 |
+
- **"detail"**: if it is asking for more information about a previously provided property (e.g., "tell me more about property 5" or "I want more information regarding 4BHK").
|
233 |
+
- **"general"**: for all other real estate-related questions.
|
234 |
+
- **"out_of_domain"**: if the query is not related to real estate (for example, tourist attractions, restaurants, etc.).
|
235 |
+
|
236 |
+
Keep in mind that queries mentioning terms like "service charge", "allow pets", "pet rules", etc., are considered real estate queries.
|
237 |
+
|
238 |
+
Return only the keyword: search, suggest, detail, general, or out_of_domain.
|
239 |
+
"""
|
240 |
+
human_str = f"Here is the query:\n{transform_suggest_to_list}"
|
241 |
+
filter_prompt = [
|
242 |
+
{"role": "system", "content": system},
|
243 |
+
{"role": "user", "content": human_str},
|
244 |
+
]
|
245 |
+
response = llm_local.invoke(messages=filter_prompt)
|
246 |
+
response_text = response.content if isinstance(response, AIMessage) else str(response)
|
247 |
+
route_value = str(response_text).strip().lower()
|
248 |
+
|
249 |
+
# Fallback: if no positive real estate signal is found, override to out_of_domain.
|
250 |
+
# if not positive_signal:
|
251 |
+
# route_value = "out_of_domain"
|
252 |
+
|
253 |
+
# Fallback
|
254 |
+
detail_phrases = [
|
255 |
+
"more information",
|
256 |
+
"tell me more",
|
257 |
+
"more details",
|
258 |
+
"give me more details",
|
259 |
+
"I need more details",
|
260 |
+
"can you provide more details",
|
261 |
+
"additional details",
|
262 |
+
"further information",
|
263 |
+
"expand on that",
|
264 |
+
"explain further",
|
265 |
+
"elaborate more",
|
266 |
+
"more specifics",
|
267 |
+
"I want to know more",
|
268 |
+
"could you elaborate",
|
269 |
+
"need more info",
|
270 |
+
"provide more details",
|
271 |
+
"detail it further",
|
272 |
+
"in-depth information",
|
273 |
+
"break it down further",
|
274 |
+
"further explanation"
|
275 |
+
]
|
276 |
+
|
277 |
+
if any(phrase in query.lower() for phrase in detail_phrases):
|
278 |
+
route_value = "detail"
|
279 |
+
|
280 |
+
if route_value not in {"search", "suggest", "detail", "general", "out_of_domain"}:
|
281 |
+
route_value = "general"
|
282 |
+
if route_value == "out_of_domain" and positive_signal:
|
283 |
+
route_value = "general"
|
284 |
+
|
285 |
+
if route_value == "out_of_domain":
|
286 |
+
# If positive real estate signal exists, treat it as "general".
|
287 |
+
route_value = "general" if positive_signal else "out_of_domain"
|
288 |
+
|
289 |
+
return {"route": route_value}
|
290 |
+
|
291 |
+
|
292 |
+
# ------------------------ Workflow Setup ------------------------
|
293 |
+
|
294 |
+
workflow = StateGraph(state_schema=dict)
|
295 |
+
|
296 |
+
def route_query(state: dict) -> dict:
|
297 |
+
new_state = state.copy()
|
298 |
+
try:
|
299 |
+
new_state["route"] = determine_route.invoke(new_state.get("query", "")).get("route", "general")
|
300 |
+
print(new_state["route"])
|
301 |
+
except Exception as e:
|
302 |
+
print(f"Routing error: {e}")
|
303 |
+
new_state["route"] = "general"
|
304 |
+
return new_state
|
305 |
+
|
306 |
+
def hybrid_extract(state: dict) -> dict:
|
307 |
+
new_state = state.copy()
|
308 |
+
new_state["filters"] = extract_filters.invoke(new_state.get("query", "")).get("filters", {})
|
309 |
+
return new_state
|
310 |
+
|
311 |
+
def search_faiss(state: dict) -> dict:
|
312 |
+
new_state = state.copy()
|
313 |
+
query_embedding = st_model.encode([state["query"]])
|
314 |
+
_, indices = index.search(query_embedding.astype(np.float32), 5)
|
315 |
+
new_state["faiss_results"] = [docs[idx] for idx in indices[0] if idx < len(docs)]
|
316 |
+
return new_state
|
317 |
+
|
318 |
+
def apply_filters(state: dict) -> dict:
|
319 |
+
new_state = state.copy()
|
320 |
+
new_state["final_results"] = apply_filters_partial(state["faiss_results"], state.get("filters", {}))
|
321 |
+
return new_state
|
322 |
+
|
323 |
+
def suggest_properties(state: dict) -> dict:
|
324 |
+
new_state = state.copy()
|
325 |
+
new_state["suggestions"] = random.sample(docs, 5)
|
326 |
+
return new_state
|
327 |
+
|
328 |
+
def handle_out_of_domain(state: dict) -> dict:
|
329 |
+
new_state = state.copy()
|
330 |
+
new_state["response"] = "I only handle real estate inquiries. Please ask a question related to properties."
|
331 |
+
return new_state
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
def generate_response(state: dict) -> dict:
|
336 |
+
new_state = state.copy()
|
337 |
+
detail_query_flag = False
|
338 |
+
|
339 |
+
# --- Disambiguate specific property requests using property number ---
|
340 |
+
property_match = re.search(r"(?:the\s+)?property\s*(\d+)\b", state.get("query", ""), re.IGNORECASE)
|
341 |
+
if property_match and new_state.get("current_properties"):
|
342 |
+
try:
|
343 |
+
index_requested = int(property_match.group(1)) - 1
|
344 |
+
if 0 <= index_requested < len(new_state["current_properties"]):
|
345 |
+
new_state["current_properties"] = [new_state["current_properties"][index_requested]]
|
346 |
+
detail_query_flag = True
|
347 |
+
new_state["detail_query"] = True
|
348 |
+
except Exception as e:
|
349 |
+
print(f"Property selection error: {e}")
|
350 |
+
|
351 |
+
# Construct messages for the LLM.
|
352 |
+
messages = []
|
353 |
+
|
354 |
+
# Add the general query prompt.
|
355 |
+
messages.append(SystemMessage(content=general_query_prompt))
|
356 |
+
# If this is a detail query, add a system message that forces a detailed answer.
|
357 |
+
if detail_query_flag:
|
358 |
+
messages.append(SystemMessage(content=(
|
359 |
+
"This is a detail query. Please provide detailed information about the property below. "
|
360 |
+
"Do not generate a new list of properties; only use the provided property details to answer the query. "
|
361 |
+
"Focus on answering the specific question (for example, whether pets are allowed)."
|
362 |
+
)))
|
363 |
+
|
364 |
+
|
365 |
+
# Provide the current property context.
|
366 |
+
if new_state.get("current_properties"):
|
367 |
+
property_context = format_property_data(new_state["current_properties"])
|
368 |
+
messages.insert(0, SystemMessage(content="Available Property:\n" + property_context))
|
369 |
+
|
370 |
+
# Add the conversation history.
|
371 |
+
for msg in state.get("messages", []):
|
372 |
+
if msg["role"] == "user":
|
373 |
+
messages.append(HumanMessage(content=msg["content"]))
|
374 |
+
else:
|
375 |
+
messages.append(AIMessage(content=msg["content"]))
|
376 |
+
|
377 |
+
# Instruction for response.
|
378 |
+
messages.append(SystemMessage(content=(
|
379 |
+
"When responding, use only the provided property details to answer the user's specific question about the property."
|
380 |
+
)))
|
381 |
+
|
382 |
+
# Invoke the LLM with the constructed messages.
|
383 |
+
connection_id = state.get("connection_id")
|
384 |
+
loop = state.get("loop")
|
385 |
+
if connection_id and loop:
|
386 |
+
callback_manager = CallbackManager([WebSocketStreamingCallbackHandler(connection_id, loop)])
|
387 |
+
_ = llm.invoke(
|
388 |
+
messages=messages,
|
389 |
+
config={"callbacks": callback_manager}
|
390 |
+
)
|
391 |
+
new_state["response"] = ""
|
392 |
+
else:
|
393 |
+
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
394 |
+
response = llm.invoke(
|
395 |
+
messages=messages,
|
396 |
+
config={"callbacks": callback_manager}
|
397 |
+
)
|
398 |
+
new_state["response"] = response.content if isinstance(response, AIMessage) else str(response)
|
399 |
+
|
400 |
+
return new_state
|
401 |
+
|
402 |
+
|
403 |
+
|
404 |
+
def format_final_response(state: dict) -> dict:
|
405 |
+
new_state = state.copy()
|
406 |
+
# Only override the current_properties if this is NOT a detail query.
|
407 |
+
if not state.get("detail_query", False):
|
408 |
+
if state.get("route") in ["search", "suggest"]:
|
409 |
+
if "final_results" in state:
|
410 |
+
new_state["current_properties"] = state["final_results"]
|
411 |
+
elif "suggestions" in state:
|
412 |
+
new_state["current_properties"] = state["suggestions"]
|
413 |
+
|
414 |
+
# Then format the response based on the (possibly filtered) current_properties.
|
415 |
+
if new_state.get("current_properties"):
|
416 |
+
formatted = []
|
417 |
+
for idx, prop in enumerate(new_state["current_properties"], 1):
|
418 |
+
cost = prop.get("totalCosts", "N/A")
|
419 |
+
cost_str = f"{cost:,}" if isinstance(cost, (int, float)) else cost
|
420 |
+
formatted.append(
|
421 |
+
f"{idx}. Type: {prop['propertyType']}, Cost: AED {cost_str}, "
|
422 |
+
f"Size: {prop.get('propertySize', 'N/A')}, Amenities: {', '.join(map(str, prop.get('amenities', []))) if prop.get('amenities') else 'N/A'}, "
|
423 |
+
f"Rental Yield: {prop.get('expectedRentalYield', 'N/A')}, "
|
424 |
+
f"Ownership: {prop.get('ownershipType', 'N/A')}\n"
|
425 |
+
)
|
426 |
+
aggregated_response = "Here are the property details:\n" + "\n".join(formatted)
|
427 |
+
connection_id = state.get("connection_id")
|
428 |
+
loop = state.get("loop")
|
429 |
+
if connection_id and loop:
|
430 |
+
import time
|
431 |
+
tokens = aggregated_response.split(" ")
|
432 |
+
for token in tokens:
|
433 |
+
asyncio.run_coroutine_threadsafe(
|
434 |
+
manager_socket.send_message(connection_id, token + " "),
|
435 |
+
loop
|
436 |
+
)
|
437 |
+
time.sleep(0.05)
|
438 |
+
new_state["response"] = ""
|
439 |
+
else:
|
440 |
+
new_state["response"] = aggregated_response
|
441 |
+
elif "response" in new_state:
|
442 |
+
new_state["response"] = str(new_state["response"])
|
443 |
+
return new_state
|
444 |
+
|
445 |
+
|
446 |
+
|
447 |
+
|
448 |
+
nodes = [
|
449 |
+
("route_query", route_query),
|
450 |
+
("hybrid_extract", hybrid_extract),
|
451 |
+
("faiss_search", search_faiss),
|
452 |
+
("apply_filters", apply_filters),
|
453 |
+
("suggest_properties", suggest_properties),
|
454 |
+
("handle_out_of_domain", handle_out_of_domain),
|
455 |
+
("generate_response", generate_response),
|
456 |
+
("format_response", format_final_response)
|
457 |
+
]
|
458 |
+
|
459 |
+
for name, node in nodes:
|
460 |
+
workflow.add_node(name, node)
|
461 |
+
|
462 |
+
workflow.add_edge(START, "route_query")
|
463 |
+
workflow.add_conditional_edges(
|
464 |
+
"route_query",
|
465 |
+
lambda state: state.get("route", "general"),
|
466 |
+
{
|
467 |
+
"search": "hybrid_extract",
|
468 |
+
"suggest": "suggest_properties",
|
469 |
+
"detail": "generate_response",
|
470 |
+
"general": "generate_response",
|
471 |
+
"out_of_domain": "handle_out_of_domain"
|
472 |
+
}
|
473 |
)
|
474 |
+
workflow.add_edge("hybrid_extract", "faiss_search")
|
475 |
+
workflow.add_edge("faiss_search", "apply_filters")
|
476 |
+
workflow.add_edge("apply_filters", "format_response")
|
477 |
+
workflow.add_edge("suggest_properties", "format_response")
|
478 |
+
workflow.add_edge("generate_response", "format_response")
|
479 |
+
workflow.add_edge("handle_out_of_domain", "format_response")
|
480 |
+
workflow.add_edge("format_response", END)
|
481 |
+
|
482 |
+
workflow_app = workflow.compile()
|
483 |
+
|
484 |
+
# ------------------------ Conversation Manager ------------------------
|
485 |
+
|
486 |
+
class ConversationManager:
|
487 |
+
def __init__(self):
|
488 |
+
self.conversation_history = []
|
489 |
+
self.current_properties = []
|
490 |
+
|
491 |
+
def _add_message(self, role: str, content: str):
|
492 |
+
self.conversation_history.append({
|
493 |
+
"role": role,
|
494 |
+
"content": content,
|
495 |
+
"timestamp": datetime.now().isoformat()
|
496 |
+
})
|
497 |
+
|
498 |
+
def process_query(self, query: str) -> str:
|
499 |
+
# Reset context on greetings to avoid using off-domain history
|
500 |
+
if query.strip().lower() in {"hi", "hello", "hey"}:
|
501 |
+
self.conversation_history = []
|
502 |
+
self.current_properties = []
|
503 |
+
greeting_response = "Hello! How can I assist you today with your real estate inquiries?"
|
504 |
+
self._add_message("assistant", greeting_response)
|
505 |
+
return greeting_response
|
506 |
+
|
507 |
+
try:
|
508 |
+
self._add_message("user", query)
|
509 |
+
initial_state = {
|
510 |
+
"messages": self.conversation_history.copy(),
|
511 |
+
"query": query,
|
512 |
+
"route": "general",
|
513 |
+
"filters": {},
|
514 |
+
"current_properties": self.current_properties
|
515 |
+
}
|
516 |
+
for event in workflow_app.stream(initial_state, stream_mode="values"):
|
517 |
+
final_state = event
|
518 |
+
if 'final_results' in final_state:
|
519 |
+
self.current_properties = final_state['final_results']
|
520 |
+
elif 'suggestions' in final_state:
|
521 |
+
self.current_properties = final_state['suggestions']
|
522 |
+
if final_state.get("route") == "general":
|
523 |
+
response_text = final_state.get("response", "")
|
524 |
+
self._add_message("assistant", response_text)
|
525 |
+
return response_text
|
526 |
+
else:
|
527 |
+
response = final_state.get("response", "I couldn't process that request.")
|
528 |
+
self._add_message("assistant", response)
|
529 |
+
return response
|
530 |
+
except Exception as e:
|
531 |
+
print(f"Processing error: {e}")
|
532 |
+
return "Sorry, I encountered an error processing your request."
|
533 |
+
|
534 |
+
conversation_managers = {}
|
535 |
+
|
536 |
+
# ------------------------ FastAPI Backend with WebSockets ------------------------
|
537 |
+
|
538 |
+
app = FastAPI()
|
539 |
+
|
540 |
+
class ConnectionManager:
|
541 |
+
def __init__(self):
|
542 |
+
self.active_connections = {}
|
543 |
+
|
544 |
+
async def connect(self, websocket: WebSocket):
|
545 |
+
await websocket.accept()
|
546 |
+
connection_id = str(uuid.uuid4())
|
547 |
+
self.active_connections[connection_id] = websocket
|
548 |
+
print(f"New connection: {connection_id}")
|
549 |
+
return connection_id
|
550 |
+
|
551 |
+
def disconnect(self, connection_id: str):
|
552 |
+
if connection_id in self.active_connections:
|
553 |
+
del self.active_connections[connection_id]
|
554 |
+
print(f"Disconnected: {connection_id}")
|
555 |
+
|
556 |
+
async def send_message(self, connection_id: str, message: str):
|
557 |
+
websocket = self.active_connections.get(connection_id)
|
558 |
+
if websocket:
|
559 |
+
await websocket.send_text(message)
|
560 |
+
|
561 |
+
manager_socket = ConnectionManager()
|
562 |
+
|
563 |
+
|
564 |
+
|
565 |
+
def stream_query(query: str, connection_id: str, loop):
|
566 |
+
conv_manager = conversation_managers.get(connection_id)
|
567 |
+
if conv_manager is None:
|
568 |
+
print(f"No conversation manager found for connection {connection_id}")
|
569 |
+
return
|
570 |
+
|
571 |
+
# Check for greetings and handle them immediately
|
572 |
+
if query.strip().lower() in {"hi", "hello", "hey"}:
|
573 |
+
conv_manager.conversation_history = []
|
574 |
+
conv_manager.current_properties = []
|
575 |
+
greeting_response = "Hello! How can I assist you today with your real estate inquiries?"
|
576 |
+
conv_manager._add_message("assistant", greeting_response)
|
577 |
+
asyncio.run_coroutine_threadsafe(
|
578 |
+
manager_socket.send_message(connection_id, greeting_response),
|
579 |
+
loop
|
580 |
+
)
|
581 |
+
return
|
582 |
+
|
583 |
+
conv_manager._add_message("user", query)
|
584 |
+
initial_state = {
|
585 |
+
"messages": conv_manager.conversation_history.copy(),
|
586 |
+
"query": query,
|
587 |
+
"route": "general",
|
588 |
+
"filters": {},
|
589 |
+
"current_properties": conv_manager.current_properties,
|
590 |
+
"connection_id": connection_id,
|
591 |
+
"loop": loop
|
592 |
+
}
|
593 |
+
try:
|
594 |
+
workflow_app.invoke(initial_state)
|
595 |
+
except Exception as e:
|
596 |
+
error_msg = f"Error processing query: {str(e)}"
|
597 |
+
asyncio.run_coroutine_threadsafe(
|
598 |
+
manager_socket.send_message(connection_id, error_msg),
|
599 |
+
loop
|
600 |
+
)
|
601 |
+
|
602 |
+
|
603 |
+
|
604 |
+
|
605 |
+
@app.websocket("/ws")
|
606 |
+
async def websocket_endpoint(websocket: WebSocket):
|
607 |
+
connection_id = await manager_socket.connect(websocket)
|
608 |
+
conversation_managers[connection_id] = ConversationManager()
|
609 |
+
try:
|
610 |
+
while True:
|
611 |
+
query = await websocket.receive_text()
|
612 |
+
loop = asyncio.get_event_loop()
|
613 |
+
threading.Thread(
|
614 |
+
target=stream_query,
|
615 |
+
args=(query, connection_id, loop),
|
616 |
+
daemon=True
|
617 |
+
).start()
|
618 |
+
except WebSocketDisconnect:
|
619 |
+
conv_manager = conversation_managers.get(connection_id)
|
620 |
+
if conv_manager:
|
621 |
+
filename = f"conversations/conversation_{connection_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
|
622 |
+
with open(filename, "w") as f:
|
623 |
+
json.dump(conv_manager.conversation_history, f, indent=4)
|
624 |
+
del conversation_managers[connection_id]
|
625 |
+
manager_socket.disconnect(connection_id)
|
626 |
|
|
|
627 |
@app.post("/query")
|
628 |
async def post_query(query: str):
|
629 |
+
conv_manager = ConversationManager()
|
630 |
+
response = conv_manager.process_query(query)
|
|
|
|
|
631 |
return {"response": response}
|
632 |
|
633 |
+
|