Spaces:
Sleeping
Sleeping
import torch | |
import streamlit as st | |
from transformers import AutoTokenizer, T5Tokenizer, T5ForConditionalGeneration, GenerationConfig, AutoModelForCausalLM | |
st.title('How do LLM choose their words?') | |
col1, col2 = st.columns(2) | |
with col1: | |
model_checkpoint = st.selectbox( | |
"Model:", | |
("google/flan-t5-base", "google/flan-t5-xl") | |
) | |
with col2: | |
temperature = st.number_input('Temperature: ', min_value=0.0, max_value=1.0, value=0.5, format='%f') | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = T5ForConditionalGeneration.from_pretrained( | |
model_checkpoint, | |
load_in_8bit=False, | |
device_map="auto" | |
) | |
instruction = st.text_area('Write an instruction:') | |
max_tokens = st.number_input('Max output length: ', min_value=1, max_value=64, format='%i') | |
prompts = [ | |
f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: {instruction} | |
### Response:""" | |
] | |
inputs = tokenizer( | |
prompts[0], | |
return_tensors="pt", | |
) | |
input_ids = inputs["input_ids"]#.to("cuda") | |
generation_config = GenerationConfig( | |
do_sample=True, | |
temperature=temperature, | |
top_p=0.995, # default 0.75 | |
top_k=100, # default 80 | |
repetition_penalty=1.5, | |
max_new_tokens=max_tokens, | |
) | |
if instruction: | |
with torch.no_grad(): | |
outputs = model.generate( | |
input_ids=input_ids, | |
attention_mask=torch.ones_like(input_ids), | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True | |
) | |
output_text = tokenizer.decode( | |
outputs['sequences'][0],#.cuda(), | |
skip_special_tokens=False | |
).strip() | |
st.write(output_text) | |
st.write(model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=False)) |