Spaces:
Sleeping
Sleeping
import torch | |
import streamlit as st | |
import numpy as np | |
import plotly.express as px, plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
from transformers import AutoTokenizer, T5Tokenizer, T5ForConditionalGeneration, GenerationConfig, AutoModelForCausalLM | |
def top_token_ids(outputs, threshold=-np.inf): | |
"Returns the index of the tokens whose score exceeds a threshold, for each output step" | |
indexes = [] | |
for tensor in outputs['scores']: | |
candidates = np.argwhere(tensor.flatten() > threshold).numpy()[0] | |
ordering_mask = np.argsort(tensor[0][candidates]) | |
candidates = candidates[ordering_mask] | |
if not isinstance(candidates, np.ndarray): | |
indexes.append(np.array([candidates])) | |
else: | |
indexes.append(candidates) | |
return indexes | |
def plot_word_scores(top_token_ids, outputs, tokenizer, boolq=False, width=600): | |
fig = make_subplots(rows=len(top_token_ids), cols=1) | |
for step, candidates in enumerate(top_token_ids): | |
fig.append_trace( | |
go.Bar( | |
y=[w[1:] for w in tokenizer.convert_ids_to_tokens(candidates)], | |
x=outputs['scores'][step][0][candidates], | |
orientation='h' | |
), | |
row=step+1, col=1 | |
) | |
fig.update_layout( | |
width=500, | |
height=300*len(top_token_ids), | |
showlegend=False | |
) | |
return fig | |
st.title('How do LLMs choose their words?') | |
instruction = st.text_area(label='Write an instruction:', placeholder='Where is Venice located?') | |
col1, col2 = st.columns(2) | |
with col1: | |
model_checkpoint = st.selectbox( | |
"Model:", | |
("google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl") | |
) | |
with col2: | |
temperature = st.slider('Temperature:', min_value=0.0, max_value=1.0, value=0.5) | |
top_p = st.slider('Top p:', min_value=0.5, max_value=1.0, value=0.99) | |
# max_tokens = st.number_input('Max output length:', min_value=1, max_value=64, format='%i') | |
max_tokens = st.slider('Max output length: ', min_value=1, max_value=64) | |
# threshold = st.number_input('Min token score:: ', value=-10.0) | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
model = T5ForConditionalGeneration.from_pretrained( | |
model_checkpoint, | |
load_in_8bit=False, | |
device_map="auto", | |
offload_folder="offload" | |
) | |
prompts = [ | |
f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: {instruction} | |
### Response:""" | |
] | |
inputs = tokenizer( | |
prompts[0], | |
return_tensors="pt", | |
) | |
input_ids = inputs["input_ids"]#.to("cuda") | |
generation_config = GenerationConfig( | |
do_sample=True, | |
temperature=temperature, | |
top_p=0.995, # default 0.75 | |
top_k=100, # default 80 | |
repetition_penalty=1.5, | |
max_new_tokens=max_tokens, | |
) | |
if instruction: | |
with torch.no_grad(): | |
outputs = model.generate( | |
input_ids=input_ids, | |
attention_mask=torch.ones_like(input_ids), | |
generation_config=generation_config, | |
return_dict_in_generate=True, | |
output_scores=True | |
) | |
output_text = tokenizer.decode( | |
outputs['sequences'][0],#.cuda(), | |
skip_special_tokens=False | |
).strip() | |
st.write(output_text) | |
fig = plot_word_scores(top_token_ids(outputs, threshold=-10.0), outputs, tokenizer) | |
st.plotly_chart(fig, theme=None, use_container_width=False) |