Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import spaces
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import torch
|
@@ -15,8 +15,6 @@ from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5Tokeniz
|
|
15 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
16 |
import gradio as gr
|
17 |
from accelerate import Accelerator
|
18 |
-
import huggingface_hub # Ensure this import is correct
|
19 |
-
|
20 |
|
21 |
# Instantiate the Accelerator
|
22 |
accelerator = Accelerator()
|
@@ -89,7 +87,7 @@ paused = False
|
|
89 |
parsed_descriptions_queue = deque()
|
90 |
|
91 |
@spaces.GPU
|
92 |
-
def
|
93 |
global paused
|
94 |
descriptions = []
|
95 |
description_queue = deque()
|
@@ -103,6 +101,9 @@ def generate_and_store_descriptions(user_prompt, batch_size=100, max_iterations=
|
|
103 |
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
104 |
print("Text generation pipeline initialized with 16-bit precision.")
|
105 |
|
|
|
|
|
|
|
106 |
while iteration_count < max_iterations:
|
107 |
if paused:
|
108 |
break
|
@@ -132,20 +133,18 @@ def generate_and_store_descriptions(user_prompt, batch_size=100, max_iterations=
|
|
132 |
if iteration_count % 3 == 0:
|
133 |
parsed_descriptions = parse_descriptions(clean_description)
|
134 |
parsed_descriptions_queue.extend(parsed_descriptions)
|
135 |
-
# Return the parsed descriptions to update the Gradio UI
|
136 |
-
return list(parsed_descriptions_queue)
|
137 |
|
138 |
iteration_count += 1
|
139 |
|
140 |
return list(parsed_descriptions_queue)
|
141 |
|
142 |
@spaces.GPU(duration=120)
|
143 |
-
def
|
144 |
# If there are fewer than 13 descriptions, use whatever is available
|
145 |
-
if len(
|
146 |
-
prompts =
|
147 |
else:
|
148 |
-
prompts = [
|
149 |
|
150 |
# Generate images from the parsed descriptions
|
151 |
images = []
|
@@ -155,16 +154,15 @@ def generate_images_from_parsed_descriptions():
|
|
155 |
return images
|
156 |
|
157 |
# Create Gradio Interface
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
)
|
163 |
|
164 |
-
|
165 |
-
fn=
|
166 |
-
inputs=
|
167 |
outputs=gr.Gallery()
|
168 |
)
|
169 |
|
170 |
-
|
|
|
1 |
+
import spaces # Import spaces at the very beginning
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import torch
|
|
|
15 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
16 |
import gradio as gr
|
17 |
from accelerate import Accelerator
|
|
|
|
|
18 |
|
19 |
# Instantiate the Accelerator
|
20 |
accelerator = Accelerator()
|
|
|
87 |
parsed_descriptions_queue = deque()
|
88 |
|
89 |
@spaces.GPU
|
90 |
+
def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_iterations=50):
|
91 |
global paused
|
92 |
descriptions = []
|
93 |
description_queue = deque()
|
|
|
101 |
text_generator = pipeline('text-generation', model=model, tokenizer=tokenizer)
|
102 |
print("Text generation pipeline initialized with 16-bit precision.")
|
103 |
|
104 |
+
# Populate the seed_words array with user input
|
105 |
+
seed_words.extend(re.findall(r'"(.*?)"', seed_words_input))
|
106 |
+
|
107 |
while iteration_count < max_iterations:
|
108 |
if paused:
|
109 |
break
|
|
|
133 |
if iteration_count % 3 == 0:
|
134 |
parsed_descriptions = parse_descriptions(clean_description)
|
135 |
parsed_descriptions_queue.extend(parsed_descriptions)
|
|
|
|
|
136 |
|
137 |
iteration_count += 1
|
138 |
|
139 |
return list(parsed_descriptions_queue)
|
140 |
|
141 |
@spaces.GPU(duration=120)
|
142 |
+
def generate_images(parsed_descriptions):
|
143 |
# If there are fewer than 13 descriptions, use whatever is available
|
144 |
+
if len(parsed_descriptions) < 13:
|
145 |
+
prompts = parsed_descriptions
|
146 |
else:
|
147 |
+
prompts = [parsed_descriptions.pop(0) for _ in range(13)]
|
148 |
|
149 |
# Generate images from the parsed descriptions
|
150 |
images = []
|
|
|
154 |
return images
|
155 |
|
156 |
# Create Gradio Interface
|
157 |
+
def combined_function(user_prompt, seed_words_input):
|
158 |
+
parsed_descriptions = generate_descriptions(user_prompt, seed_words_input)
|
159 |
+
images = generate_images(parsed_descriptions)
|
160 |
+
return images
|
|
|
161 |
|
162 |
+
interface = gr.Interface(
|
163 |
+
fn=combined_function,
|
164 |
+
inputs=[gr.Textbox(lines=2, placeholder="Enter a prompt for descriptions..."), gr.Textbox(lines=2, placeholder='Enter seed words in quotes, e.g., "cat", "dog", "sunset"...')],
|
165 |
outputs=gr.Gallery()
|
166 |
)
|
167 |
|
168 |
+
interface.launch()
|