patrickbdevaney commited on
Commit
d5f6733
·
verified ·
1 Parent(s): 25d995e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -32,7 +32,7 @@ parsed_descriptions_queue = deque()
32
 
33
  # Usage limits
34
  MAX_DESCRIPTIONS = 30
35
- MAX_IMAGES = 3
36
 
37
  def initialize_diffusers():
38
  from optimum.quanto import freeze, qfloat8, quantize
@@ -88,7 +88,7 @@ def parse_descriptions(text):
88
  return descriptions
89
 
90
  @spaces.GPU
91
- def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_iterations=2):
92
  descriptions = []
93
  description_queue = deque()
94
  iteration_count = 0
@@ -128,8 +128,8 @@ def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_ite
128
 
129
  return list(parsed_descriptions_queue)
130
 
131
- @spaces.GPU(duration=120)
132
- def generate_images(parsed_descriptions, max_iterations=3):
133
  pipe = initialize_diffusers()
134
 
135
  if len(parsed_descriptions) < MAX_IMAGES:
@@ -139,7 +139,7 @@ def generate_images(parsed_descriptions, max_iterations=3):
139
 
140
  images = []
141
  for prompt in prompts:
142
- images.extend(pipe(prompt, num_images=1, num_inference_steps=max_iterations, height=1024, width=1024).images) # Define the resolution here
143
 
144
  return images
145
 
@@ -161,4 +161,4 @@ if __name__ == '__main__':
161
  allow_flagging='never' # Disable flagging
162
  )
163
 
164
- interface.launch(share=True)
 
32
 
33
  # Usage limits
34
  MAX_DESCRIPTIONS = 30
35
+ MAX_IMAGES = 1 # Generate only 1 image
36
 
37
  def initialize_diffusers():
38
  from optimum.quanto import freeze, qfloat8, quantize
 
88
  return descriptions
89
 
90
  @spaces.GPU
91
+ def generate_descriptions(user_prompt, seed_words_input, batch_size=100, max_iterations=1): # Set max_iterations to 1
92
  descriptions = []
93
  description_queue = deque()
94
  iteration_count = 0
 
128
 
129
  return list(parsed_descriptions_queue)
130
 
131
+ @spaces.GPU
132
+ def generate_images(parsed_descriptions, max_iterations=2): # Set max_iterations to 1
133
  pipe = initialize_diffusers()
134
 
135
  if len(parsed_descriptions) < MAX_IMAGES:
 
139
 
140
  images = []
141
  for prompt in prompts:
142
+ images.extend(pipe(prompt, num_images=1, num_inference_steps=max_iterations, height=512, width=512).images) # Set resolution to 512 x 512
143
 
144
  return images
145
 
 
161
  allow_flagging='never' # Disable flagging
162
  )
163
 
164
+ interface.launch(share=True)