Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -15,13 +15,9 @@ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
15 |
import gradio as gr
|
16 |
from accelerate import Accelerator
|
17 |
|
18 |
-
|
19 |
# Instantiate the Accelerator
|
20 |
accelerator = Accelerator()
|
21 |
|
22 |
-
# Use the accelerator to prepare your models, optimizers, and data loaders
|
23 |
-
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
|
24 |
-
|
25 |
dtype = torch.bfloat16
|
26 |
|
27 |
# Set environment variables for local path
|
@@ -62,10 +58,10 @@ output_dir = 'generated_images'
|
|
62 |
os.makedirs(output_dir, exist_ok=True)
|
63 |
|
64 |
# Function to generate a detailed visual description prompt
|
65 |
-
def generate_description_prompt(subject, user_prompt):
|
66 |
-
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than
|
67 |
try:
|
68 |
-
generated_text = text_generator(prompt, max_length=
|
69 |
generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
|
70 |
return generated_description if generated_description else None
|
71 |
except Exception as e:
|
@@ -115,7 +111,7 @@ def generate_and_store_descriptions(user_prompt, batch_size=100, max_iterations=
|
|
115 |
break
|
116 |
|
117 |
subject = random.choice(available_subjects)
|
118 |
-
generated_description = generate_description_prompt(subject, user_prompt)
|
119 |
|
120 |
if generated_description:
|
121 |
# Remove any offending symbols
|
|
|
15 |
import gradio as gr
|
16 |
from accelerate import Accelerator
|
17 |
|
|
|
18 |
# Instantiate the Accelerator
|
19 |
accelerator = Accelerator()
|
20 |
|
|
|
|
|
|
|
21 |
dtype = torch.bfloat16
|
22 |
|
23 |
# Set environment variables for local path
|
|
|
58 |
os.makedirs(output_dir, exist_ok=True)
|
59 |
|
60 |
# Function to generate a detailed visual description prompt
|
61 |
+
def generate_description_prompt(subject, user_prompt, text_generator):
|
62 |
+
prompt = f"write concise vivid visual description enclosed in brackets like [ <description> ] less than 50 words of {user_prompt} different from {subject}. "
|
63 |
try:
|
64 |
+
generated_text = text_generator(prompt, max_length=160, num_return_sequences=1, truncation=True)[0]['generated_text']
|
65 |
generated_description = re.sub(rf'{re.escape(prompt)}\s*', '', generated_text).strip() # Remove the prompt from the generated text
|
66 |
return generated_description if generated_description else None
|
67 |
except Exception as e:
|
|
|
111 |
break
|
112 |
|
113 |
subject = random.choice(available_subjects)
|
114 |
+
generated_description = generate_description_prompt(subject, user_prompt, text_generator)
|
115 |
|
116 |
if generated_description:
|
117 |
# Remove any offending symbols
|