patrickbdevaney
commited on
Commit
·
35a837e
1
Parent(s):
981a502
upload of demo to hf spaces
Browse files- app.py +42 -0
- index.html +35 -0
- requirements.txt +5 -0
- sentiment_analysis_model.h5 +3 -0
- tokenizer.pickle +3 -0
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
# Load the model and tokenizer
|
9 |
+
try:
|
10 |
+
model = load_model('sentiment_analysis_model.h5')
|
11 |
+
except Exception as e:
|
12 |
+
st.error(f"Error loading model: {e}")
|
13 |
+
|
14 |
+
try:
|
15 |
+
with open('tokenizer.pickle', 'rb') as handle:
|
16 |
+
tokenizer = pickle.load(handle)
|
17 |
+
except Exception as e:
|
18 |
+
st.error(f"Error loading tokenizer: {e}")
|
19 |
+
|
20 |
+
# Define a function to predict the sentiment of input text
|
21 |
+
def predict_sentiment(text):
|
22 |
+
# Tokenize and pad the input text
|
23 |
+
text_sequence = tokenizer.texts_to_sequences([text])
|
24 |
+
text_sequence = pad_sequences(text_sequence, maxlen=100)
|
25 |
+
|
26 |
+
# Make a prediction using the trained model
|
27 |
+
predicted_rating = model.predict(text_sequence)[0]
|
28 |
+
if np.argmax(predicted_rating) == 0:
|
29 |
+
return 'Negative'
|
30 |
+
elif np.argmax(predicted_rating) == 1:
|
31 |
+
return 'Neutral'
|
32 |
+
else:
|
33 |
+
return 'Positive'
|
34 |
+
|
35 |
+
st.title('Sentiment Analysis')
|
36 |
+
comment = st.text_area('Enter your comment:')
|
37 |
+
if st.button('Analyze Sentiment'):
|
38 |
+
if 'model' in globals() and 'tokenizer' in globals():
|
39 |
+
sentiment = predict_sentiment(comment)
|
40 |
+
st.write(f'Sentiment: {sentiment}')
|
41 |
+
else:
|
42 |
+
st.error("Model or tokenizer not loaded properly.")
|
index.html
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Sentiment Analysis</title>
|
7 |
+
</head>
|
8 |
+
<body>
|
9 |
+
<h1>Sentiment Analysis</h1>
|
10 |
+
<form id="commentForm">
|
11 |
+
<label for="comment">Enter your comment:</label><br>
|
12 |
+
<textarea id="comment" name="comment" rows="4" cols="50"></textarea><br><br>
|
13 |
+
<input type="submit" value="Analyze Sentiment">
|
14 |
+
</form>
|
15 |
+
<p id="result"></p>
|
16 |
+
|
17 |
+
<script>
|
18 |
+
document.getElementById('commentForm').addEventListener('submit', function(event) {
|
19 |
+
event.preventDefault();
|
20 |
+
const comment = document.getElementById('comment').value;
|
21 |
+
fetch('/predict', {
|
22 |
+
method: 'POST',
|
23 |
+
headers: {
|
24 |
+
'Content-Type': 'application/json',
|
25 |
+
},
|
26 |
+
body: JSON.stringify({ comment: comment }),
|
27 |
+
})
|
28 |
+
.then(response => response.json())
|
29 |
+
.then(data => {
|
30 |
+
document.getElementById('result').innerText = 'Sentiment: ' + data.sentiment;
|
31 |
+
});
|
32 |
+
});
|
33 |
+
</script>
|
34 |
+
</body>
|
35 |
+
</html>
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
tensorflow
|
3 |
+
joblib
|
4 |
+
numpy
|
5 |
+
flask
|
sentiment_analysis_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9ddfd21899724f70867f400fc4769f91072b25f095f8556712e24c0cf229f3e
|
3 |
+
size 6448856
|
tokenizer.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:522f4e3a9e107b2f6e045ae4f90fadbb8055d21045ce42cbaa960b060a7b8b15
|
3 |
+
size 2111402
|