sw-api / swarms /agents /openai_assistant.py
patrickbdevaney's picture
v1 attempt at hf space api
ffcf62f
import json
import os
import subprocess
import sys
import time
from typing import Any, Callable, Dict, List, Optional
from loguru import logger
from swarms.structs.agent import Agent
def check_openai_package():
"""Check if the OpenAI package is installed, and install it if not."""
try:
import openai
return openai
except ImportError:
logger.info(
"OpenAI package not found. Attempting to install..."
)
# Attempt to install the OpenAI package
try:
subprocess.check_call(
[sys.executable, "-m", "pip", "install", "openai"]
)
logger.info("OpenAI package installed successfully.")
import openai # Re-import the package after installation
return openai
except subprocess.CalledProcessError as e:
logger.error(f"Failed to install OpenAI package: {e}")
raise RuntimeError(
"OpenAI package installation failed."
) from e
class OpenAIAssistant(Agent):
"""
OpenAI Assistant wrapper for the swarms framework.
Integrates OpenAI's Assistants API with the swarms architecture.
Example:
>>> assistant = OpenAIAssistant(
... name="Math Tutor",
... instructions="You are a personal math tutor.",
... model="gpt-4o",
... tools=[{"type": "code_interpreter"}]
... )
>>> response = assistant.run("Solve 3x + 11 = 14")
"""
def __init__(
self,
name: str,
description: str = "Standard openai assistant wrapper",
instructions: Optional[str] = None,
model: str = "gpt-4o",
tools: Optional[List[Dict[str, Any]]] = None,
file_ids: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
*args,
**kwargs,
):
"""Initialize the OpenAI Assistant.
Args:
name: Name of the assistant
instructions: System instructions for the assistant
model: Model to use (default: gpt-4o)
tools: List of tools to enable (code_interpreter, retrieval)
file_ids: List of file IDs to attach
metadata: Additional metadata
functions: List of custom functions to make available
"""
self.name = name
self.description = description
self.instructions = instructions
self.model = model
self.tools = tools
self.file_ids = file_ids
self.metadata = metadata
self.functions = functions
super().__init__(*args, **kwargs)
# Initialize tools list with any provided functions
self.tools = tools or []
if functions:
for func in functions:
self.tools.append(
{"type": "function", "function": func}
)
# Create the OpenAI Assistant
openai = check_openai_package()
self.client = openai.OpenAI(
api_key=os.getenv("OPENAI_API_KEY")
)
self.assistant = self.client.beta.assistants.create(
name=name,
instructions=instructions,
model=model,
tools=self.tools,
# file_ids=file_ids or [],
metadata=metadata or {},
)
# Store available functions
self.available_functions: Dict[str, Callable] = {}
def add_function(
self,
func: Callable,
description: str,
parameters: Dict[str, Any],
) -> None:
"""Add a function that the assistant can call.
Args:
func: The function to make available to the assistant
description: Description of what the function does
parameters: JSON schema describing the function parameters
"""
func_dict = {
"name": func.__name__,
"description": description,
"parameters": parameters,
}
# Add to tools list
self.tools.append({"type": "function", "function": func_dict})
# Store function reference
self.available_functions[func.__name__] = func
# Update assistant with new tools
self.assistant = self.client.beta.assistants.update(
assistant_id=self.assistant.id, tools=self.tools
)
def _handle_tool_calls(self, run, thread_id: str) -> None:
"""Handle any required tool calls during a run.
This method processes any tool calls required by the assistant during execution.
It extracts function calls, executes them with provided arguments, and submits
the results back to the assistant.
Args:
run: The current run object from the OpenAI API
thread_id: ID of the current conversation thread
Returns:
Updated run object after processing tool calls
Raises:
Exception: If there are errors executing the tool calls
"""
while run.status == "requires_action":
tool_calls = (
run.required_action.submit_tool_outputs.tool_calls
)
tool_outputs = []
for tool_call in tool_calls:
if tool_call.type == "function":
# Get function details
function_name = tool_call.function.name
function_args = json.loads(
tool_call.function.arguments
)
# Call function if available
if function_name in self.available_functions:
function_response = self.available_functions[
function_name
](**function_args)
tool_outputs.append(
{
"tool_call_id": tool_call.id,
"output": str(function_response),
}
)
# Submit outputs back to the run
run = self.client.beta.threads.runs.submit_tool_outputs(
thread_id=thread_id,
run_id=run.id,
tool_outputs=tool_outputs,
)
# Wait for processing
run = self._wait_for_run(run)
return run
def _wait_for_run(self, run) -> Any:
"""Wait for a run to complete and handle any required actions.
This method polls the OpenAI API to check the status of a run until it completes
or fails. It handles intermediate states like required actions and implements
exponential backoff.
Args:
run: The run object to monitor
Returns:
The completed run object
Raises:
Exception: If the run fails or expires
"""
while True:
run = self.client.beta.threads.runs.retrieve(
thread_id=run.thread_id, run_id=run.id
)
if run.status == "completed":
break
elif run.status == "requires_action":
run = self._handle_tool_calls(run, run.thread_id)
if run.status == "completed":
break
elif run.status in ["failed", "expired"]:
raise Exception(
f"Run failed with status: {run.status}"
)
time.sleep(3) # Wait 3 seconds before checking again
return run
def _ensure_thread(self):
"""Ensure a thread exists for the conversation.
This method checks if there is an active thread for the current conversation.
If no thread exists, it creates a new one. This maintains conversation context
across multiple interactions.
Side Effects:
Sets self.thread if it doesn't exist
"""
self.thread = self.client.beta.threads.create()
def add_message(
self, content: str, file_ids: Optional[List[str]] = None
) -> None:
"""Add a message to the thread.
This method adds a new user message to the conversation thread. It ensures
a thread exists before adding the message and handles file attachments.
Args:
content: The text content of the message to add
file_ids: Optional list of file IDs to attach to the message. These must be
files that have been previously uploaded to OpenAI.
Side Effects:
Creates a new thread if none exists
Adds the message to the thread in OpenAI's system
"""
self._ensure_thread()
self.client.beta.threads.messages.create(
thread_id=self.thread.id,
role="user",
content=content,
# file_ids=file_ids or [],
)
def _get_response(self) -> str:
"""Get the latest assistant response from the thread."""
messages = self.client.beta.threads.messages.list(
thread_id=self.thread.id, order="desc", limit=1
)
if not messages.data:
return ""
message = messages.data[0]
if message.role == "assistant":
return message.content[0].text.value
return ""
def run(self, task: str, *args, **kwargs) -> str:
"""Run a task using the OpenAI Assistant.
Args:
task: The task or prompt to send to the assistant
Returns:
The assistant's response as a string
"""
self._ensure_thread()
# Add the user message
self.add_message(task)
# Create and run the assistant
run = self.client.beta.threads.runs.create(
thread_id=self.thread.id,
assistant_id=self.assistant.id,
instructions=self.instructions,
)
# Wait for completion
run = self._wait_for_run(run)
# Only get and return the response if run completed successfully
if run.status == "completed":
return self._get_response()
return ""
def call(self, task: str, *args, **kwargs) -> str:
"""Alias for run() to maintain compatibility with different agent interfaces."""
return self.run(task, *args, **kwargs)