from swarms import Agent from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) from swarm_models import OpenAIChat model = OpenAIChat(model_name="gpt-4o") # Initialize the agent agent = Agent( agent_name="Financial-Analysis-Agent", agent_description="Personal finance advisor agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT + "Output the token when you're done creating a portfolio of etfs, index, funds, and more for AI", max_loops=1, llm=model, dynamic_temperature_enabled=True, user_name="Kye", retry_attempts=3, # streaming_on=True, context_length=8192, return_step_meta=False, output_type="str", # "json", "dict", "csv" OR "string" "yaml" and auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task max_tokens=4000, # max output tokens # interactive=True, stopping_token="", saved_state_path="agent_00.json", interactive=False, ) async def run_agent(): await agent.arun( "Create a table of super high growth opportunities for AI. I have $40k to invest in ETFs, index funds, and more. Please create a table in markdown.", all_cores=True, ) if __name__ == "__main__": import asyncio asyncio.run(run_agent())