import asyncio from typing import List from swarm_models import OpenAIChat from swarms.structs.async_workflow import ( SpeakerConfig, SpeakerRole, create_default_workflow, run_workflow_with_retry, ) from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) from swarms.structs.agent import Agent async def create_specialized_agents() -> List[Agent]: """Create a set of specialized agents for financial analysis""" # Base model configuration model = OpenAIChat(model_name="gpt-4o") # Financial Analysis Agent financial_agent = Agent( agent_name="Financial-Analysis-Agent", agent_description="Personal finance advisor agent", system_prompt=FINANCIAL_AGENT_SYS_PROMPT + "Output the token when you're done creating a portfolio of etfs, index, funds, and more for AI", max_loops=1, llm=model, dynamic_temperature_enabled=True, user_name="Kye", retry_attempts=3, context_length=8192, return_step_meta=False, output_type="str", auto_generate_prompt=False, max_tokens=4000, stopping_token="", saved_state_path="financial_agent.json", interactive=False, ) # Risk Assessment Agent risk_agent = Agent( agent_name="Risk-Assessment-Agent", agent_description="Investment risk analysis specialist", system_prompt="Analyze investment risks and provide risk scores. Output when analysis is complete.", max_loops=1, llm=model, dynamic_temperature_enabled=True, user_name="Kye", retry_attempts=3, context_length=8192, output_type="str", max_tokens=4000, stopping_token="", saved_state_path="risk_agent.json", interactive=False, ) # Market Research Agent research_agent = Agent( agent_name="Market-Research-Agent", agent_description="AI and tech market research specialist", system_prompt="Research AI market trends and growth opportunities. Output when research is complete.", max_loops=1, llm=model, dynamic_temperature_enabled=True, user_name="Kye", retry_attempts=3, context_length=8192, output_type="str", max_tokens=4000, stopping_token="", saved_state_path="research_agent.json", interactive=False, ) return [financial_agent, risk_agent, research_agent] async def main(): # Create specialized agents agents = await create_specialized_agents() # Create workflow with group chat enabled workflow = create_default_workflow( agents=agents, name="AI-Investment-Analysis-Workflow", enable_group_chat=True, ) # Configure speaker roles workflow.speaker_system.add_speaker( SpeakerConfig( role=SpeakerRole.COORDINATOR, agent=agents[0], # Financial agent as coordinator priority=1, concurrent=False, required=True, ) ) workflow.speaker_system.add_speaker( SpeakerConfig( role=SpeakerRole.CRITIC, agent=agents[1], # Risk agent as critic priority=2, concurrent=True, ) ) workflow.speaker_system.add_speaker( SpeakerConfig( role=SpeakerRole.EXECUTOR, agent=agents[2], # Research agent as executor priority=2, concurrent=True, ) ) # Investment analysis task investment_task = """ Create a comprehensive investment analysis for a $40k portfolio focused on AI growth opportunities: 1. Identify high-growth AI ETFs and index funds 2. Analyze risks and potential returns 3. Create a diversified portfolio allocation 4. Provide market trend analysis Present the results in a structured markdown format. """ try: # Run workflow with retry result = await run_workflow_with_retry( workflow=workflow, task=investment_task, max_retries=3 ) print("\nWorkflow Results:") print("================") # Process and display agent outputs for output in result.agent_outputs: print(f"\nAgent: {output.agent_name}") print("-" * (len(output.agent_name) + 8)) print(output.output) # Display group chat history if enabled if workflow.enable_group_chat: print("\nGroup Chat Discussion:") print("=====================") for msg in workflow.speaker_system.message_history: print(f"\n{msg.role} ({msg.agent_name}):") print(msg.content) # Save detailed results if result.metadata.get("shared_memory_keys"): print("\nShared Insights:") print("===============") for key in result.metadata["shared_memory_keys"]: value = workflow.shared_memory.get(key) if value: print(f"\n{key}:") print(value) except Exception as e: print(f"Workflow failed: {str(e)}") finally: await workflow.cleanup() if __name__ == "__main__": # Run the example asyncio.run(main())