import os import threading import time from collections import deque from dataclasses import dataclass from datetime import datetime from queue import Queue from typing import Any, Dict, List, Optional, Tuple import ccxt import numpy as np import pandas as pd from dotenv import load_dotenv from loguru import logger from scipy import stats from swarm_models import OpenAIChat from swarms import Agent logger.enable("") @dataclass class MarketSignal: timestamp: datetime signal_type: str source: str data: Dict[str, Any] confidence: float metadata: Dict[str, Any] class MarketDataBuffer: def __init__(self, max_size: int = 10000): self.max_size = max_size self.data = deque(maxlen=max_size) self.lock = threading.Lock() def add(self, item: Any) -> None: with self.lock: self.data.append(item) def get_latest(self, n: int = None) -> List[Any]: with self.lock: if n is None: return list(self.data) return list(self.data)[-n:] class SignalCSVWriter: def __init__(self, output_dir: str = "market_data"): self.output_dir = output_dir self.ensure_output_dir() self.files = {} def ensure_output_dir(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) def get_filename(self, signal_type: str, symbol: str) -> str: date_str = datetime.now().strftime("%Y%m%d") return ( f"{self.output_dir}/{signal_type}_{symbol}_{date_str}.csv" ) def write_order_book_signal(self, signal: MarketSignal): symbol = signal.data["symbol"] metrics = signal.data["metrics"] filename = self.get_filename("order_book", symbol) # Create header if file doesn't exist if not os.path.exists(filename): header = [ "timestamp", "symbol", "bid_volume", "ask_volume", "mid_price", "bid_vwap", "ask_vwap", "spread", "depth_imbalance", "confidence", ] with open(filename, "w") as f: f.write(",".join(header) + "\n") # Write data data = [ str(signal.timestamp), symbol, str(metrics["bid_volume"]), str(metrics["ask_volume"]), str(metrics["mid_price"]), str(metrics["bid_vwap"]), str(metrics["ask_vwap"]), str(metrics["spread"]), str(metrics["depth_imbalance"]), str(signal.confidence), ] with open(filename, "a") as f: f.write(",".join(data) + "\n") def write_tick_signal(self, signal: MarketSignal): symbol = signal.data["symbol"] metrics = signal.data["metrics"] filename = self.get_filename("tick_data", symbol) if not os.path.exists(filename): header = [ "timestamp", "symbol", "vwap", "price_momentum", "volume_mean", "trade_intensity", "kyle_lambda", "roll_spread", "confidence", ] with open(filename, "w") as f: f.write(",".join(header) + "\n") data = [ str(signal.timestamp), symbol, str(metrics["vwap"]), str(metrics["price_momentum"]), str(metrics["volume_mean"]), str(metrics["trade_intensity"]), str(metrics["kyle_lambda"]), str(metrics["roll_spread"]), str(signal.confidence), ] with open(filename, "a") as f: f.write(",".join(data) + "\n") def write_arbitrage_signal(self, signal: MarketSignal): if ( "best_opportunity" not in signal.data or not signal.data["best_opportunity"] ): return symbol = signal.data["symbol"] opp = signal.data["best_opportunity"] filename = self.get_filename("arbitrage", symbol) if not os.path.exists(filename): header = [ "timestamp", "symbol", "buy_venue", "sell_venue", "spread", "return", "buy_price", "sell_price", "confidence", ] with open(filename, "w") as f: f.write(",".join(header) + "\n") data = [ str(signal.timestamp), symbol, opp["buy_venue"], opp["sell_venue"], str(opp["spread"]), str(opp["return"]), str(opp["buy_price"]), str(opp["sell_price"]), str(signal.confidence), ] with open(filename, "a") as f: f.write(",".join(data) + "\n") class ExchangeManager: def __init__(self): self.available_exchanges = { "kraken": ccxt.kraken, "coinbase": ccxt.coinbase, "kucoin": ccxt.kucoin, "bitfinex": ccxt.bitfinex, "gemini": ccxt.gemini, } self.active_exchanges = {} self.test_exchanges() def test_exchanges(self): """Test each exchange and keep only the accessible ones""" for name, exchange_class in self.available_exchanges.items(): try: exchange = exchange_class() exchange.load_markets() self.active_exchanges[name] = exchange logger.info(f"Successfully connected to {name}") except Exception as e: logger.warning(f"Could not connect to {name}: {e}") def get_primary_exchange(self) -> Optional[ccxt.Exchange]: """Get the first available exchange""" if not self.active_exchanges: raise RuntimeError("No exchanges available") return next(iter(self.active_exchanges.values())) def get_all_active_exchanges(self) -> Dict[str, ccxt.Exchange]: """Get all active exchanges""" return self.active_exchanges class BaseMarketAgent(Agent): def __init__( self, agent_name: str, system_prompt: str, api_key: str, model_name: str = "gpt-4-0125-preview", temperature: float = 0.1, ): model = OpenAIChat( openai_api_key=api_key, model_name=model_name, temperature=temperature, ) super().__init__( agent_name=agent_name, system_prompt=system_prompt, llm=model, max_loops=1, autosave=True, dashboard=False, verbose=True, dynamic_temperature_enabled=True, context_length=200000, streaming_on=True, output_type="str", ) self.signal_queue = Queue() self.is_running = False self.last_update = datetime.now() self.update_interval = 1.0 # seconds def rate_limit_check(self) -> bool: current_time = datetime.now() if ( current_time - self.last_update ).total_seconds() < self.update_interval: return False self.last_update = current_time return True class OrderBookAgent(BaseMarketAgent): def __init__(self, api_key: str): system_prompt = """ You are an Order Book Analysis Agent specialized in detecting institutional flows. Monitor order book depth and changes to identify potential large trades and institutional activity. Analyze patterns in order placement and cancellation rates. """ super().__init__("OrderBookAgent", system_prompt, api_key) exchange_manager = ExchangeManager() self.exchange = exchange_manager.get_primary_exchange() self.order_book_buffer = MarketDataBuffer(max_size=100) self.vwap_window = 20 def calculate_order_book_metrics( self, order_book: Dict ) -> Dict[str, float]: bids = np.array(order_book["bids"]) asks = np.array(order_book["asks"]) # Calculate key metrics bid_volume = np.sum(bids[:, 1]) ask_volume = np.sum(asks[:, 1]) mid_price = (bids[0][0] + asks[0][0]) / 2 # Calculate VWAP bid_vwap = ( np.sum( bids[: self.vwap_window, 0] * bids[: self.vwap_window, 1] ) / bid_volume if bid_volume > 0 else 0 ) ask_vwap = ( np.sum( asks[: self.vwap_window, 0] * asks[: self.vwap_window, 1] ) / ask_volume if ask_volume > 0 else 0 ) # Calculate order book slope bid_slope = np.polyfit( range(len(bids[:10])), bids[:10, 0], 1 )[0] ask_slope = np.polyfit( range(len(asks[:10])), asks[:10, 0], 1 )[0] return { "bid_volume": bid_volume, "ask_volume": ask_volume, "mid_price": mid_price, "bid_vwap": bid_vwap, "ask_vwap": ask_vwap, "bid_slope": bid_slope, "ask_slope": ask_slope, "spread": asks[0][0] - bids[0][0], "depth_imbalance": (bid_volume - ask_volume) / (bid_volume + ask_volume), } def detect_large_orders( self, metrics: Dict[str, float], threshold: float = 2.0 ) -> bool: historical_books = self.order_book_buffer.get_latest(20) if not historical_books: return False # Calculate historical volume statistics hist_volumes = [ book["bid_volume"] + book["ask_volume"] for book in historical_books ] volume_mean = np.mean(hist_volumes) volume_std = np.std(hist_volumes) current_volume = metrics["bid_volume"] + metrics["ask_volume"] z_score = (current_volume - volume_mean) / ( volume_std if volume_std > 0 else 1 ) return abs(z_score) > threshold def analyze_order_book(self, symbol: str) -> MarketSignal: if not self.rate_limit_check(): return None try: order_book = self.exchange.fetch_order_book( symbol, limit=100 ) metrics = self.calculate_order_book_metrics(order_book) self.order_book_buffer.add(metrics) # Format data for LLM analysis analysis_prompt = f""" Analyze this order book for {symbol}: Bid Volume: {metrics['bid_volume']} Ask Volume: {metrics['ask_volume']} Mid Price: {metrics['mid_price']} Spread: {metrics['spread']} Depth Imbalance: {metrics['depth_imbalance']} What patterns do you see? Is there evidence of institutional activity? Are there any significant imbalances that could lead to price movement? """ # Get LLM analysis llm_analysis = self.run(analysis_prompt) # Original signal creation with added LLM analysis return MarketSignal( timestamp=datetime.now(), signal_type="order_book_analysis", source="OrderBookAgent", data={ "metrics": metrics, "large_order_detected": self.detect_large_orders( metrics ), "symbol": symbol, "llm_analysis": llm_analysis, # Add LLM insights }, confidence=min( abs(metrics["depth_imbalance"]) * 0.7 + ( 1.0 if self.detect_large_orders(metrics) else 0.0 ) * 0.3, 1.0, ), metadata={ "update_latency": ( datetime.now() - self.last_update ).total_seconds(), "buffer_size": len( self.order_book_buffer.get_latest() ), }, ) except Exception as e: logger.error(f"Error in order book analysis: {str(e)}") return None class TickDataAgent(BaseMarketAgent): def __init__(self, api_key: str): system_prompt = """ You are a Tick Data Analysis Agent specialized in analyzing high-frequency price movements. Monitor tick-by-tick data for patterns indicating short-term price direction. Analyze trade size distribution and execution speed. """ super().__init__("TickDataAgent", system_prompt, api_key) self.tick_buffer = MarketDataBuffer(max_size=5000) exchange_manager = ExchangeManager() self.exchange = exchange_manager.get_primary_exchange() def calculate_tick_metrics( self, ticks: List[Dict] ) -> Dict[str, float]: df = pd.DataFrame(ticks) df["price"] = pd.to_numeric(df["price"]) df["volume"] = pd.to_numeric(df["amount"]) # Calculate key metrics metrics = {} # Volume-weighted average price (VWAP) metrics["vwap"] = (df["price"] * df["volume"]).sum() / df[ "volume" ].sum() # Price momentum metrics["price_momentum"] = df["price"].diff().mean() # Volume profile metrics["volume_mean"] = df["volume"].mean() metrics["volume_std"] = df["volume"].std() # Trade intensity time_diff = ( df["timestamp"].max() - df["timestamp"].min() ) / 1000 # Convert to seconds metrics["trade_intensity"] = ( len(df) / time_diff if time_diff > 0 else 0 ) # Microstructure indicators metrics["kyle_lambda"] = self.calculate_kyle_lambda(df) metrics["roll_spread"] = self.calculate_roll_spread(df) return metrics def calculate_kyle_lambda(self, df: pd.DataFrame) -> float: """Calculate Kyle's Lambda (price impact coefficient)""" try: price_changes = df["price"].diff().dropna() volume_changes = df["volume"].diff().dropna() if len(price_changes) > 1 and len(volume_changes) > 1: slope, _, _, _, _ = stats.linregress( volume_changes, price_changes ) return abs(slope) except Exception as e: logger.warning(f"Error calculating Kyle's Lambda: {e}") return 0.0 def calculate_roll_spread(self, df: pd.DataFrame) -> float: """Calculate Roll's implied spread""" try: price_changes = df["price"].diff().dropna() if len(price_changes) > 1: autocov = np.cov( price_changes[:-1], price_changes[1:] )[0][1] return 2 * np.sqrt(-autocov) if autocov < 0 else 0.0 except Exception as e: logger.warning(f"Error calculating Roll spread: {e}") return 0.0 def calculate_tick_metrics( self, ticks: List[Dict] ) -> Dict[str, float]: try: # Debug the incoming data structure logger.info( f"Raw tick data structure: {ticks[0] if ticks else 'No ticks'}" ) # Convert trades to proper format formatted_trades = [] for trade in ticks: formatted_trade = { "price": float( trade.get("price", trade.get("last", 0)) ), # Handle different exchange formats "amount": float( trade.get( "amount", trade.get( "size", trade.get("quantity", 0) ), ) ), "timestamp": trade.get( "timestamp", int(time.time() * 1000) ), } formatted_trades.append(formatted_trade) df = pd.DataFrame(formatted_trades) if df.empty: logger.warning("No valid trades to analyze") return { "vwap": 0.0, "price_momentum": 0.0, "volume_mean": 0.0, "volume_std": 0.0, "trade_intensity": 0.0, "kyle_lambda": 0.0, "roll_spread": 0.0, } # Calculate metrics with the properly formatted data metrics = {} metrics["vwap"] = ( (df["price"] * df["amount"]).sum() / df["amount"].sum() if not df.empty else 0 ) metrics["price_momentum"] = ( df["price"].diff().mean() if len(df) > 1 else 0 ) metrics["volume_mean"] = df["amount"].mean() metrics["volume_std"] = df["amount"].std() time_diff = ( (df["timestamp"].max() - df["timestamp"].min()) / 1000 if len(df) > 1 else 1 ) metrics["trade_intensity"] = ( len(df) / time_diff if time_diff > 0 else 0 ) metrics["kyle_lambda"] = self.calculate_kyle_lambda(df) metrics["roll_spread"] = self.calculate_roll_spread(df) logger.info(f"Calculated metrics: {metrics}") return metrics except Exception as e: logger.error( f"Error in calculate_tick_metrics: {str(e)}", exc_info=True, ) # Return default metrics on error return { "vwap": 0.0, "price_momentum": 0.0, "volume_mean": 0.0, "volume_std": 0.0, "trade_intensity": 0.0, "kyle_lambda": 0.0, "roll_spread": 0.0, } def analyze_ticks(self, symbol: str) -> MarketSignal: if not self.rate_limit_check(): return None try: # Fetch recent trades trades = self.exchange.fetch_trades(symbol, limit=100) # Debug the raw trades data logger.info(f"Fetched {len(trades)} trades for {symbol}") if trades: logger.info(f"Sample trade: {trades[0]}") self.tick_buffer.add(trades) recent_ticks = self.tick_buffer.get_latest(1000) metrics = self.calculate_tick_metrics(recent_ticks) # Only proceed with LLM analysis if we have valid metrics if metrics["vwap"] > 0: analysis_prompt = f""" Analyze these trading patterns for {symbol}: VWAP: {metrics['vwap']:.2f} Price Momentum: {metrics['price_momentum']:.2f} Trade Intensity: {metrics['trade_intensity']:.2f} Kyle's Lambda: {metrics['kyle_lambda']:.2f} What does this tell us about: 1. Current market sentiment 2. Potential price direction 3. Trading activity patterns """ llm_analysis = self.run(analysis_prompt) else: llm_analysis = "Insufficient data for analysis" return MarketSignal( timestamp=datetime.now(), signal_type="tick_analysis", source="TickDataAgent", data={ "metrics": metrics, "symbol": symbol, "prediction": np.sign(metrics["price_momentum"]), "llm_analysis": llm_analysis, }, confidence=min(metrics["trade_intensity"] / 100, 1.0) * 0.4 + min(metrics["kyle_lambda"], 1.0) * 0.6, metadata={ "update_latency": ( datetime.now() - self.last_update ).total_seconds(), "buffer_size": len(self.tick_buffer.get_latest()), }, ) except Exception as e: logger.error( f"Error in tick analysis: {str(e)}", exc_info=True ) return None class LatencyArbitrageAgent(BaseMarketAgent): def __init__(self, api_key: str): system_prompt = """ You are a Latency Arbitrage Agent specialized in detecting price discrepancies across venues. Monitor multiple exchanges for price differences exceeding transaction costs. Calculate optimal trade sizes and routes. """ super().__init__( "LatencyArbitrageAgent", system_prompt, api_key ) exchange_manager = ExchangeManager() self.exchanges = exchange_manager.get_all_active_exchanges() self.fee_structure = { "kraken": 0.0026, # 0.26% taker fee "coinbase": 0.006, # 0.6% taker fee "kucoin": 0.001, # 0.1% taker fee "bitfinex": 0.002, # 0.2% taker fee "gemini": 0.003, # 0.3% taker fee } self.price_buffer = { ex: MarketDataBuffer(max_size=100) for ex in self.exchanges } def calculate_effective_prices( self, ticker: Dict, venue: str ) -> Tuple[float, float]: """Calculate effective prices including fees""" fee = self.fee_structure[venue] return ( ticker["bid"] * (1 - fee), # Effective sell price ticker["ask"] * (1 + fee), # Effective buy price ) def calculate_arbitrage_metrics( self, prices: Dict[str, Dict] ) -> Dict: opportunities = [] for venue1 in prices: for venue2 in prices: if venue1 != venue2: sell_price, _ = self.calculate_effective_prices( prices[venue1], venue1 ) _, buy_price = self.calculate_effective_prices( prices[venue2], venue2 ) spread = sell_price - buy_price if spread > 0: opportunities.append( { "sell_venue": venue1, "buy_venue": venue2, "spread": spread, "return": spread / buy_price, "buy_price": buy_price, "sell_price": sell_price, } ) return { "opportunities": opportunities, "best_opportunity": ( max(opportunities, key=lambda x: x["return"]) if opportunities else None ), } def find_arbitrage(self, symbol: str) -> MarketSignal: """ Find arbitrage opportunities across exchanges with LLM analysis """ if not self.rate_limit_check(): return None try: prices = {} timestamps = {} for name, exchange in self.exchanges.items(): try: ticker = exchange.fetch_ticker(symbol) prices[name] = { "bid": ticker["bid"], "ask": ticker["ask"], } timestamps[name] = ticker["timestamp"] self.price_buffer[name].add(prices[name]) except Exception as e: logger.warning( f"Error fetching {name} price: {e}" ) if len(prices) < 2: return None metrics = self.calculate_arbitrage_metrics(prices) if not metrics["best_opportunity"]: return None # Calculate confidence based on spread and timing opp = metrics["best_opportunity"] timing_factor = 1.0 - min( abs( timestamps[opp["sell_venue"]] - timestamps[opp["buy_venue"]] ) / 1000, 1.0, ) spread_factor = min( opp["return"] * 5, 1.0 ) # Scale return to confidence confidence = timing_factor * 0.4 + spread_factor * 0.6 # Format price data for LLM analysis price_summary = "\n".join( [ f"{venue}: Bid ${prices[venue]['bid']:.2f}, Ask ${prices[venue]['ask']:.2f}" for venue in prices.keys() ] ) # Create detailed analysis prompt analysis_prompt = f""" Analyze this arbitrage opportunity for {symbol}: Current Prices: {price_summary} Best Opportunity Found: Buy Venue: {opp['buy_venue']} at ${opp['buy_price']:.2f} Sell Venue: {opp['sell_venue']} at ${opp['sell_price']:.2f} Spread: ${opp['spread']:.2f} Expected Return: {opp['return']*100:.3f}% Time Difference: {abs(timestamps[opp['sell_venue']] - timestamps[opp['buy_venue']])}ms Consider: 1. Is this opportunity likely to be profitable after execution costs? 2. What risks might prevent successful execution? 3. What market conditions might have created this opportunity? 4. How does the timing difference affect execution probability? """ # Get LLM analysis llm_analysis = self.run(analysis_prompt) # Create comprehensive signal return MarketSignal( timestamp=datetime.now(), signal_type="arbitrage_opportunity", source="LatencyArbitrageAgent", data={ "metrics": metrics, "symbol": symbol, "best_opportunity": metrics["best_opportunity"], "all_prices": prices, "llm_analysis": llm_analysis, "timing": { "time_difference_ms": abs( timestamps[opp["sell_venue"]] - timestamps[opp["buy_venue"]] ), "timestamps": timestamps, }, }, confidence=confidence, metadata={ "update_latency": ( datetime.now() - self.last_update ).total_seconds(), "timestamp_deltas": timestamps, "venue_count": len(prices), "execution_risk": 1.0 - timing_factor, # Higher time difference = higher risk }, ) except Exception as e: logger.error(f"Error in arbitrage analysis: {str(e)}") return None class SwarmCoordinator: def __init__(self, api_key: str): self.api_key = api_key self.agents = { "order_book": OrderBookAgent(api_key), "tick_data": TickDataAgent(api_key), "latency_arb": LatencyArbitrageAgent(api_key), } self.signal_processors = [] self.signal_history = MarketDataBuffer(max_size=1000) self.running = False self.lock = threading.Lock() self.csv_writer = SignalCSVWriter() def register_signal_processor(self, processor): """Register a new signal processor function""" with self.lock: self.signal_processors.append(processor) def process_signals(self, signals: List[MarketSignal]): """Process signals through all registered processors""" if not signals: return self.signal_history.add(signals) try: for processor in self.signal_processors: processor(signals) except Exception as e: logger.error(f"Error in signal processing: {e}") def aggregate_signals( self, signals: List[MarketSignal] ) -> Dict[str, Any]: """Aggregate multiple signals into a combined market view""" if not signals: return {} self.signal_history.add(signals) aggregated = { "timestamp": datetime.now(), "symbols": set(), "agent_signals": {}, "combined_confidence": 0, "market_state": {}, } for signal in signals: symbol = signal.data.get("symbol") if symbol: aggregated["symbols"].add(symbol) agent_type = signal.source if agent_type not in aggregated["agent_signals"]: aggregated["agent_signals"][agent_type] = [] aggregated["agent_signals"][agent_type].append(signal) # Update market state based on signal type if signal.signal_type == "order_book_analysis": metrics = signal.data.get("metrics", {}) aggregated["market_state"].update( { "order_book_imbalance": metrics.get( "depth_imbalance" ), "spread": metrics.get("spread"), "large_orders_detected": signal.data.get( "large_order_detected" ), } ) elif signal.signal_type == "tick_analysis": metrics = signal.data.get("metrics", {}) aggregated["market_state"].update( { "price_momentum": metrics.get( "price_momentum" ), "trade_intensity": metrics.get( "trade_intensity" ), "kyle_lambda": metrics.get("kyle_lambda"), } ) elif signal.signal_type == "arbitrage_opportunity": opp = signal.data.get("best_opportunity") if opp: aggregated["market_state"].update( { "arbitrage_spread": opp.get("spread"), "arbitrage_return": opp.get("return"), } ) # Calculate combined confidence as weighted average confidences = [s.confidence for s in signals] if confidences: aggregated["combined_confidence"] = np.mean(confidences) return aggregated def start(self, symbols: List[str], interval: float = 1.0): """Start the swarm monitoring system""" if self.running: logger.warning("Swarm is already running") return self.running = True def agent_loop(agent, symbol): while self.running: try: if isinstance(agent, OrderBookAgent): signal = agent.analyze_order_book(symbol) elif isinstance(agent, TickDataAgent): signal = agent.analyze_ticks(symbol) elif isinstance(agent, LatencyArbitrageAgent): signal = agent.find_arbitrage(symbol) if signal: agent.signal_queue.put(signal) except Exception as e: logger.error( f"Error in {agent.agent_name} loop: {e}" ) time.sleep(interval) def signal_collection_loop(): while self.running: try: current_signals = [] # Collect signals from all agents for agent in self.agents.values(): while not agent.signal_queue.empty(): signal = agent.signal_queue.get_nowait() if signal: current_signals.append(signal) if current_signals: # Process current signals self.process_signals(current_signals) # Aggregate and analyze aggregated = self.aggregate_signals( current_signals ) logger.info( f"Aggregated market view: {aggregated}" ) except Exception as e: logger.error( f"Error in signal collection loop: {e}" ) time.sleep(interval) # Start agent threads self.threads = [] for symbol in symbols: for agent in self.agents.values(): thread = threading.Thread( target=agent_loop, args=(agent, symbol), daemon=True, ) thread.start() self.threads.append(thread) # Start signal collection thread collection_thread = threading.Thread( target=signal_collection_loop, daemon=True ) collection_thread.start() self.threads.append(collection_thread) def stop(self): """Stop the swarm monitoring system""" self.running = False for thread in self.threads: thread.join(timeout=5.0) logger.info("Swarm stopped") def market_making_processor(signals: List[MarketSignal]): """Enhanced signal processor with LLM analysis integration""" for signal in signals: if signal.confidence > 0.8: if signal.signal_type == "arbitrage_opportunity": opp = signal.data.get("best_opportunity") if ( opp and opp["return"] > 0.001 ): # 0.1% return threshold logger.info( "\nSignificant arbitrage opportunity detected:" ) logger.info(f"Return: {opp['return']*100:.3f}%") logger.info(f"Spread: ${opp['spread']:.2f}") if "llm_analysis" in signal.data: logger.info("\nLLM Analysis:") logger.info(signal.data["llm_analysis"]) elif signal.signal_type == "order_book_analysis": imbalance = signal.data["metrics"]["depth_imbalance"] if abs(imbalance) > 0.3: logger.info( f"\nSignificant order book imbalance detected: {imbalance:.3f}" ) if "llm_analysis" in signal.data: logger.info("\nLLM Analysis:") logger.info(signal.data["llm_analysis"]) elif signal.signal_type == "tick_analysis": momentum = signal.data["metrics"]["price_momentum"] if abs(momentum) > 0: logger.info( f"\nSignificant price momentum detected: {momentum:.3f}" ) if "llm_analysis" in signal.data: logger.info("\nLLM Analysis:") logger.info(signal.data["llm_analysis"]) load_dotenv() api_key = os.getenv("OPENAI_API_KEY") coordinator = SwarmCoordinator(api_key) coordinator.register_signal_processor(market_making_processor) symbols = ["BTC/USDT", "ETH/USDT"] logger.info( "Starting market microstructure analysis with LLM integration..." ) logger.info(f"Monitoring symbols: {symbols}") logger.info( f"CSV files will be written to: {os.path.abspath('market_data')}" ) try: coordinator.start(symbols) while True: time.sleep(1) except KeyboardInterrupt: logger.info("Gracefully shutting down...") coordinator.stop()