from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler import gradio as gr import torch from PIL import Image import time import psutil import random # from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker start_time = time.time() current_steps = 15 pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" if torch.cuda.is_available(): pipe = pipe.to("cuda") def error_str(error, title="Error"): return ( f"""#### {title} {error}""" if error else "" ) def inference( prompt, text_guidance_scale, image_guidance_scale, image, steps, neg_prompt="", width=512, height=512, seed=0, ): print(psutil.virtual_memory()) # print memory usage if seed == 0: seed = random.randint(0, 2147483647) generator = torch.Generator("cuda").manual_seed(seed) try: ratio = min(height / image.height, width / image.width) image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS) result = pipe( prompt, negative_prompt=neg_prompt, image=image, num_inference_steps=int(steps), image_guidance_scale=image_guidance_scale, guidance_scale=text_guidance_scale, generator=generator, ) # return replace_nsfw_images(result) return result.images, f"Done. Seed: {seed}" except Exception as e: return None, error_str(e) def replace_nsfw_images(results): for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images with gr.Blocks(css="style.css") as demo: gr.HTML( f"""

Instruct-Pix2Pix Diffusion

Demo for Instruct-Pix2Pix Diffusion: https://github.com/timothybrooks/instruct-pix2pix

Running on {device}

You can also duplicate this space and upgrade to gpu by going to settings:
Duplicate Space

""" ) with gr.Row(): with gr.Column(scale=55): with gr.Group(): with gr.Box(visible=False) as custom_model_group: gr.HTML( "
Custom models have to be downloaded first, so give it some time.
" ) with gr.Row(): prompt = gr.Textbox( label="Prompt", show_label=False, max_lines=2, placeholder="Enter prompt.", ).style(container=False) generate = gr.Button(value="Generate").style( rounded=(False, True, True, False) ) # image_out = gr.Image(height=512) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") state_info = gr.Textbox(label="State", show_label=False, max_lines=2).style( container=False ) error_output = gr.Markdown() with gr.Column(scale=45): with gr.Tab("Options"): with gr.Group(): neg_prompt = gr.Textbox( label="Negative prompt", placeholder="What to exclude from the image", ) n_images = gr.Slider( label="Images", value=1, minimum=1, maximum=4, step=1 ) with gr.Row(): steps = gr.Slider( label="Steps", value=current_steps, minimum=2, maximum=75, step=1, ) with gr.Row(): width = gr.Slider( label="Width", value=512, minimum=64, maximum=1024, step=8 ) height = gr.Slider( label="Height", value=512, minimum=64, maximum=1024, step=8 ) seed = gr.Slider( 0, 2147483647, label="Seed (0 = random)", value=0, step=1 ) with gr.Group(): image = gr.Image( label="Image", height=256, tool="editor", type="pil" ) text_guidance_scale = gr.Slider( label="Text Guidance Scale", minimum=1.0, value=5.5, maximum=15, step=0.1 ) image_guidance_scale = gr.Slider( label="Image Guidance Scale", minimum=1.0, maximum=15, step=0.1, value=1.5, ) inputs = [ prompt, text_guidance_scale, image_guidance_scale, image, steps, neg_prompt, width, height, seed, ] outputs = [gallery, error_output] prompt.submit(inference, inputs=inputs, outputs=outputs) generate.click(inference, inputs=inputs, outputs=outputs) ex = gr.Examples( [ ["turn him into a cyborg", 7.5, 1.2, "./statue.jpg", 20] ], inputs=[prompt, text_guidance_scale, image_guidance_scale, image, steps], outputs=outputs, fn=inference, cache_examples=True, ) print(f"Space built in {time.time() - start_time:.2f} seconds") demo.queue(concurrency_count=1) demo.launch()