Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,998 Bytes
78e32cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
# Copyright 2019 Jian Wu
# License: Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
import math
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as tf
import librosa.filters as filters
from typing import Optional, Tuple
from distutils.version import LooseVersion
EPSILON = float(np.finfo(np.float32).eps)
TORCH_VERSION = th.__version__
if TORCH_VERSION >= LooseVersion("1.7"):
from torch.fft import fft as fft_func
else:
pass
def export_jit(transform: nn.Module) -> nn.Module:
"""
Export transform module for inference
"""
export_out = [module for module in transform if module.exportable()]
return nn.Sequential(*export_out)
def init_window(wnd: str, frame_len: int, device: th.device = "cpu") -> th.Tensor:
"""
Return window coefficient
Args:
wnd: window name
frame_len: length of the frame
"""
def sqrthann(frame_len, periodic=True):
return th.hann_window(frame_len, periodic=periodic) ** 0.5
if wnd not in ["bartlett", "hann", "hamm", "blackman", "rect", "sqrthann"]:
raise RuntimeError(f"Unknown window type: {wnd}")
wnd_tpl = {
"sqrthann": sqrthann,
"hann": th.hann_window,
"hamm": th.hamming_window,
"blackman": th.blackman_window,
"bartlett": th.bartlett_window,
"rect": th.ones,
}
if wnd != "rect":
# match with librosa
c = wnd_tpl[wnd](frame_len, periodic=True)
else:
c = wnd_tpl[wnd](frame_len)
return c.to(device)
def init_kernel(
frame_len: int,
frame_hop: int,
window: th.Tensor,
round_pow_of_two: bool = True,
normalized: bool = False,
inverse: bool = False,
mode: str = "librosa",
) -> Tuple[th.Tensor, th.Tensor]:
"""
Return STFT kernels
Args:
frame_len: length of the frame
frame_hop: hop size between frames
window: window tensor
round_pow_of_two: if true, choose round(#power_of_two) as the FFT size
normalized: return normalized DFT matrix
inverse: return iDFT matrix
mode: framing mode (librosa or kaldi)
"""
if mode not in ["librosa", "kaldi"]:
raise ValueError(f"Unsupported mode: {mode}")
# FFT size: B
if round_pow_of_two or mode == "kaldi":
fft_size = 2 ** math.ceil(math.log2(frame_len))
else:
fft_size = frame_len
# center padding window if needed
if mode == "librosa" and fft_size != frame_len:
lpad = (fft_size - frame_len) // 2
window = tf.pad(window, (lpad, fft_size - frame_len - lpad))
if normalized:
# make K^H * K = I
S = fft_size ** 0.5
else:
S = 1
# W x B x 2
if TORCH_VERSION >= LooseVersion("1.7"):
K = fft_func(th.eye(fft_size) / S, dim=-1)
K = th.stack([K.real, K.imag], dim=-1)
else:
I = th.stack([th.eye(fft_size), th.zeros(fft_size, fft_size)], dim=-1)
K = th.fft(I / S, 1)
if mode == "kaldi":
K = K[:frame_len]
if inverse and not normalized:
# to make K^H * K = I
K = K / fft_size
# 2 x B x W
K = th.transpose(K, 0, 2)
# 2B x 1 x W
K = th.reshape(K, (fft_size * 2, 1, K.shape[-1]))
return K.to(window.device), window
def mel_filter(
frame_len: int,
round_pow_of_two: bool = True,
num_bins: Optional[int] = None,
sr: int = 16000,
num_mels: int = 80,
fmin: float = 0.0,
fmax: Optional[float] = None,
norm: bool = False,
) -> th.Tensor:
"""
Return mel filter coefficients
Args:
frame_len: length of the frame
round_pow_of_two: if true, choose round(#power_of_two) as the FFT size
num_bins: number of the frequency bins produced by STFT
num_mels: number of the mel bands
fmin: lowest frequency (in Hz)
fmax: highest frequency (in Hz)
norm: normalize the mel filter coefficients
"""
# FFT points
if num_bins is None:
N = 2 ** math.ceil(math.log2(frame_len)) if round_pow_of_two else frame_len
else:
N = (num_bins - 1) * 2
# fmin & fmax
freq_upper = sr // 2
if fmax is None:
fmax = freq_upper
else:
fmax = min(fmax + freq_upper if fmax < 0 else fmax, freq_upper)
fmin = max(0, fmin)
# mel filter coefficients
mel = filters.mel(
sr,
N,
n_mels=num_mels,
fmax=fmax,
fmin=fmin,
htk=True,
norm="slaney" if norm else None,
)
# num_mels x (N // 2 + 1)
return th.tensor(mel, dtype=th.float32)
def speed_perturb_filter(
src_sr: int, dst_sr: int, cutoff_ratio: float = 0.95, num_zeros: int = 64
) -> th.Tensor:
"""
Return speed perturb filters, reference:
https://github.com/danpovey/filtering/blob/master/lilfilter/resampler.py
Args:
src_sr: sample rate of the source signal
dst_sr: sample rate of the target signal
Return:
weight (Tensor): coefficients of the filter
"""
if src_sr == dst_sr:
raise ValueError(f"src_sr should not be equal to dst_sr: {src_sr}/{dst_sr}")
gcd = math.gcd(src_sr, dst_sr)
src_sr = src_sr // gcd
dst_sr = dst_sr // gcd
if src_sr == 1 or dst_sr == 1:
raise ValueError("do not support integer downsample/upsample")
zeros_per_block = min(src_sr, dst_sr) * cutoff_ratio
padding = 1 + int(num_zeros / zeros_per_block)
# dst_sr x src_sr x K
times = (
np.arange(dst_sr)[:, None, None] / float(dst_sr)
- np.arange(src_sr)[None, :, None] / float(src_sr)
- np.arange(2 * padding + 1)[None, None, :]
+ padding
)
window = np.heaviside(1 - np.abs(times / padding), 0.0) * (
0.5 + 0.5 * np.cos(times / padding * math.pi)
)
weight = np.sinc(times * zeros_per_block) * window * zeros_per_block / float(src_sr)
return th.tensor(weight, dtype=th.float32)
def splice_feature(
feats: th.Tensor, lctx: int = 1, rctx: int = 1, op: str = "cat"
) -> th.Tensor:
"""
Splice feature
Args:
feats (Tensor): N x ... x T x F, original feature
lctx: left context
rctx: right context
op: operator on feature context
Return:
splice (Tensor): feature with context padded
"""
if lctx + rctx == 0:
return feats
if op not in ["cat", "stack"]:
raise ValueError(f"Unknown op for feature splicing: {op}")
# [N x ... x T x F, ...]
ctx = []
T = feats.shape[-2]
for c in range(-lctx, rctx + 1):
idx = th.arange(c, c + T, device=feats.device, dtype=th.int64)
idx = th.clamp(idx, min=0, max=T - 1)
ctx.append(th.index_select(feats, -2, idx))
if op == "cat":
# N x ... x T x FD
splice = th.cat(ctx, -1)
else:
# N x ... x T x F x D
splice = th.stack(ctx, -1)
return splice
def _forward_stft(
wav: th.Tensor,
kernel: th.Tensor,
window: th.Tensor,
return_polar: bool = False,
pre_emphasis: float = 0,
frame_hop: int = 256,
onesided: bool = False,
center: bool = False,
eps: float = EPSILON,
) -> th.Tensor:
"""
STFT function implemented by conv1d (not efficient, but we don't care during training)
Args:
wav (Tensor): N x (C) x S
kernel (Tensor): STFT transform kernels, from init_kernel(...)
return_polar: return [magnitude; phase] Tensor or [real; imag] Tensor
pre_emphasis: factor of preemphasis
frame_hop: frame hop size in number samples
onesided: return half FFT bins
center: if true, we assumed to have centered frames
Return:
transform (Tensor): STFT transform results
"""
wav_dim = wav.dim()
if wav_dim not in [2, 3]:
raise RuntimeError(f"STFT expect 2D/3D tensor, but got {wav_dim:d}D")
# if N x S, reshape N x 1 x S
# else: reshape NC x 1 x S
N, S = wav.shape[0], wav.shape[-1]
wav = wav.view(-1, 1, S)
# NC x 1 x S+2P
if center:
pad = kernel.shape[-1] // 2
# NOTE: match with librosa
wav = tf.pad(wav, (pad, pad), mode="reflect")
# STFT
kernel = kernel * window
if pre_emphasis > 0:
# NC x W x T
frames = tf.unfold(
wav[:, None], (1, kernel.shape[-1]), stride=frame_hop, padding=0
)
# follow Kaldi's Preemphasize
frames[:, 1:] = frames[:, 1:] - pre_emphasis * frames[:, :-1]
frames[:, 0] *= 1 - pre_emphasis
# 1 x 2B x W, NC x W x T, NC x 2B x T
packed = th.matmul(kernel[:, 0][None, ...], frames)
else:
packed = tf.conv1d(wav, kernel, stride=frame_hop, padding=0)
# NC x 2B x T => N x C x 2B x T
if wav_dim == 3:
packed = packed.view(N, -1, packed.shape[-2], packed.shape[-1])
# N x (C) x B x T
real, imag = th.chunk(packed, 2, dim=-2)
# N x (C) x B/2+1 x T
if onesided:
num_bins = kernel.shape[0] // 4 + 1
real = real[..., :num_bins, :]
imag = imag[..., :num_bins, :]
if return_polar:
mag = (real ** 2 + imag ** 2 + eps) ** 0.5
pha = th.atan2(imag, real)
return th.stack([mag, pha], dim=-1)
else:
return th.stack([real, imag], dim=-1)
def _inverse_stft(
transform: th.Tensor,
kernel: th.Tensor,
window: th.Tensor,
return_polar: bool = False,
frame_hop: int = 256,
onesided: bool = False,
center: bool = False,
eps: float = EPSILON,
) -> th.Tensor:
"""
iSTFT function implemented by conv1d
Args:
transform (Tensor): STFT transform results
kernel (Tensor): STFT transform kernels, from init_kernel(...)
return_polar (bool): keep same with the one in _forward_stft
frame_hop: frame hop size in number samples
onesided: return half FFT bins
center: used in _forward_stft
Return:
wav (Tensor), N x S
"""
# (N) x F x T x 2
transform_dim = transform.dim()
# if F x T x 2, reshape 1 x F x T x 2
if transform_dim == 3:
transform = th.unsqueeze(transform, 0)
if transform_dim != 4:
raise RuntimeError(f"Expect 4D tensor, but got {transform_dim}D")
if return_polar:
real = transform[..., 0] * th.cos(transform[..., 1])
imag = transform[..., 0] * th.sin(transform[..., 1])
else:
real, imag = transform[..., 0], transform[..., 1]
if onesided:
# [self.num_bins - 2, ..., 1]
reverse = range(kernel.shape[0] // 4 - 1, 0, -1)
# extend matrix: N x B x T
real = th.cat([real, real[:, reverse]], 1)
imag = th.cat([imag, -imag[:, reverse]], 1)
# pack: N x 2B x T
packed = th.cat([real, imag], dim=1)
# N x 1 x T
wav = tf.conv_transpose1d(packed, kernel * window, stride=frame_hop, padding=0)
# normalized audio samples
# refer: https://github.com/pytorch/audio/blob/2ebbbf511fb1e6c47b59fd32ad7e66023fa0dff1/torchaudio/functional.py#L171
num_frames = packed.shape[-1]
win_length = window.shape[0]
# W x T
win = th.repeat_interleave(window[..., None] ** 2, num_frames, dim=-1)
# Do OLA on windows
# v1)
I = th.eye(win_length, device=win.device)[:, None]
denorm = tf.conv_transpose1d(win[None, ...], I, stride=frame_hop, padding=0)
# v2)
# num_samples = (num_frames - 1) * frame_hop + win_length
# denorm = tf.fold(win[None, ...], (num_samples, 1), (win_length, 1),
# stride=frame_hop)[..., 0]
if center:
pad = kernel.shape[-1] // 2
wav = wav[..., pad:-pad]
denorm = denorm[..., pad:-pad]
wav = wav / (denorm + eps)
# N x S
return wav.squeeze(1)
def _pytorch_stft(
wav: th.Tensor,
frame_len: int,
frame_hop: int,
n_fft: int = 512,
return_polar: bool = False,
window: str = "sqrthann",
normalized: bool = False,
onesided: bool = True,
center: bool = False,
eps: float = EPSILON,
) -> th.Tensor:
"""
Wrapper of PyTorch STFT function
Args:
wav (Tensor): source audio signal
frame_len: length of the frame
frame_hop: hop size between frames
n_fft: number of the FFT size
return_polar: return the results in polar coordinate
window: window tensor
center: same definition with the parameter in librosa.stft
normalized: use normalized DFT kernel
onesided: output onesided STFT
Return:
transform (Tensor), STFT transform results
"""
if TORCH_VERSION < LooseVersion("1.7"):
raise RuntimeError("Can not use this function as TORCH_VERSION < 1.7")
wav_dim = wav.dim()
if wav_dim not in [2, 3]:
raise RuntimeError(f"STFT expect 2D/3D tensor, but got {wav_dim:d}D")
# if N x C x S, reshape NC x S
wav = wav.view(-1, wav.shape[-1])
# STFT: N x F x T x 2
stft = th.stft(
wav,
n_fft,
hop_length=frame_hop,
win_length=window.shape[-1],
window=window,
center=center,
normalized=normalized,
onesided=onesided,
return_complex=False,
)
if wav_dim == 3:
N, F, T, _ = stft.shape
stft = stft.view(N, -1, F, T, 2)
# N x (C) x F x T x 2
if not return_polar:
return stft
# N x (C) x F x T
real, imag = stft[..., 0], stft[..., 1]
mag = (real ** 2 + imag ** 2 + eps) ** 0.5
pha = th.atan2(imag, real)
return th.stack([mag, pha], dim=-1)
def _pytorch_istft(
transform: th.Tensor,
frame_len: int,
frame_hop: int,
window: th.Tensor,
n_fft: int = 512,
return_polar: bool = False,
normalized: bool = False,
onesided: bool = True,
center: bool = False,
eps: float = EPSILON,
) -> th.Tensor:
"""
Wrapper of PyTorch iSTFT function
Args:
transform (Tensor): results of STFT
frame_len: length of the frame
frame_hop: hop size between frames
window: window tensor
n_fft: number of the FFT size
return_polar: keep same with _pytorch_stft
center: same definition with the parameter in librosa.stft
normalized: use normalized DFT kernel
onesided: output onesided STFT
Return:
wav (Tensor): synthetic audio
"""
if TORCH_VERSION < LooseVersion("1.7"):
raise RuntimeError("Can not use this function as TORCH_VERSION < 1.7")
transform_dim = transform.dim()
# if F x T x 2, reshape 1 x F x T x 2
if transform_dim == 3:
transform = th.unsqueeze(transform, 0)
if transform_dim != 4:
raise RuntimeError(f"Expect 4D tensor, but got {transform_dim}D")
if return_polar:
real = transform[..., 0] * th.cos(transform[..., 1])
imag = transform[..., 0] * th.sin(transform[..., 1])
transform = th.stack([real, imag], -1)
# stft is a complex tensor of PyTorch
stft = th.view_as_complex(transform)
# (N) x S
wav = th.istft(
stft,
n_fft,
hop_length=frame_hop,
win_length=window.shape[-1],
window=window,
center=center,
normalized=normalized,
onesided=onesided,
return_complex=False,
)
return wav
def forward_stft(
wav: th.Tensor,
frame_len: int,
frame_hop: int,
window: str = "sqrthann",
round_pow_of_two: bool = True,
return_polar: bool = False,
pre_emphasis: float = 0,
normalized: bool = False,
onesided: bool = True,
center: bool = False,
mode: str = "librosa",
eps: float = EPSILON,
) -> th.Tensor:
"""
STFT function implementation, equals to STFT layer
Args:
wav: source audio signal
frame_len: length of the frame
frame_hop: hop size between frames
return_polar: return [magnitude; phase] Tensor or [real; imag] Tensor
window: window name
center: center flag (similar with that in librosa.stft)
round_pow_of_two: if true, choose round(#power_of_two) as the FFT size
pre_emphasis: factor of preemphasis
normalized: use normalized DFT kernel
onesided: output onesided STFT
inverse: using iDFT kernel (for iSTFT)
mode: STFT mode, "kaldi" or "librosa" or "torch"
Return:
transform: results of STFT
"""
window = init_window(window, frame_len, device=wav.device)
if mode == "torch":
n_fft = 2 ** math.ceil(math.log2(frame_len)) if round_pow_of_two else frame_len
return _pytorch_stft(
wav,
frame_len,
frame_hop,
n_fft=n_fft,
return_polar=return_polar,
window=window,
normalized=normalized,
onesided=onesided,
center=center,
eps=eps,
)
else:
kernel, window = init_kernel(
frame_len,
frame_hop,
window=window,
round_pow_of_two=round_pow_of_two,
normalized=normalized,
inverse=False,
mode=mode,
)
return _forward_stft(
wav,
kernel,
window,
return_polar=return_polar,
frame_hop=frame_hop,
pre_emphasis=pre_emphasis,
onesided=onesided,
center=center,
eps=eps,
)
def inverse_stft(
transform: th.Tensor,
frame_len: int,
frame_hop: int,
return_polar: bool = False,
window: str = "sqrthann",
round_pow_of_two: bool = True,
normalized: bool = False,
onesided: bool = True,
center: bool = False,
mode: str = "librosa",
eps: float = EPSILON,
) -> th.Tensor:
"""
iSTFT function implementation, equals to iSTFT layer
Args:
transform: results of STFT
frame_len: length of the frame
frame_hop: hop size between frames
return_polar: keep same with function forward_stft(...)
window: window name
center: center flag (similar with that in librosa.stft)
round_pow_of_two: if true, choose round(#power_of_two) as the FFT size
normalized: use normalized DFT kernel
onesided: output onesided STFT
mode: STFT mode, "kaldi" or "librosa" or "torch"
Return:
wav: synthetic signals
"""
window = init_window(window, frame_len, device=transform.device)
if mode == "torch":
n_fft = 2 ** math.ceil(math.log2(frame_len)) if round_pow_of_two else frame_len
return _pytorch_istft(
transform,
frame_len,
frame_hop,
n_fft=n_fft,
return_polar=return_polar,
window=window,
normalized=normalized,
onesided=onesided,
center=center,
eps=eps,
)
else:
kernel, window = init_kernel(
frame_len,
frame_hop,
window,
round_pow_of_two=round_pow_of_two,
normalized=normalized,
inverse=True,
mode=mode,
)
return _inverse_stft(
transform,
kernel,
window,
return_polar=return_polar,
frame_hop=frame_hop,
onesided=onesided,
center=center,
eps=eps,
)
class STFTBase(nn.Module):
"""
Base layer for (i)STFT
Args:
frame_len: length of the frame
frame_hop: hop size between frames
window: window name
center: center flag (similar with that in librosa.stft)
round_pow_of_two: if true, choose round(#power_of_two) as the FFT size
normalized: use normalized DFT kernel
pre_emphasis: factor of preemphasis
mode: STFT mode, "kaldi" or "librosa" or "torch"
onesided: output onesided STFT
inverse: using iDFT kernel (for iSTFT)
"""
def __init__(
self,
frame_len: int,
frame_hop: int,
window: str = "sqrthann",
round_pow_of_two: bool = True,
normalized: bool = False,
pre_emphasis: float = 0,
onesided: bool = True,
inverse: bool = False,
center: bool = False,
mode: str = "librosa",
) -> None:
super(STFTBase, self).__init__()
if mode != "torch":
K, w = init_kernel(
frame_len,
frame_hop,
init_window(window, frame_len),
round_pow_of_two=round_pow_of_two,
normalized=normalized,
inverse=inverse,
mode=mode,
)
self.K = nn.Parameter(K, requires_grad=False)
self.w = nn.Parameter(w, requires_grad=False)
self.num_bins = self.K.shape[0] // 4 + 1
self.pre_emphasis = pre_emphasis
self.win_length = self.K.shape[2]
else:
self.K = None
w = init_window(window, frame_len)
self.w = nn.Parameter(w, requires_grad=False)
fft_size = (
2 ** math.ceil(math.log2(frame_len)) if round_pow_of_two else frame_len
)
self.num_bins = fft_size // 2 + 1
self.pre_emphasis = 0
self.win_length = fft_size
self.frame_len = frame_len
self.frame_hop = frame_hop
self.window = window
self.normalized = normalized
self.onesided = onesided
self.center = center
self.mode = mode
def num_frames(self, wav_len: th.Tensor) -> th.Tensor:
"""
Compute number of the frames
"""
assert th.sum(wav_len <= self.win_length) == 0
if self.center:
wav_len += self.win_length
return (
th.div(wav_len - self.win_length, self.frame_hop, rounding_mode="trunc") + 1
)
def extra_repr(self) -> str:
str_repr = (
f"num_bins={self.num_bins}, win_length={self.win_length}, "
+ f"stride={self.frame_hop}, window={self.window}, "
+ f"center={self.center}, mode={self.mode}"
)
if not self.onesided:
str_repr += f", onesided={self.onesided}"
if self.pre_emphasis > 0:
str_repr += f", pre_emphasis={self.pre_emphasis}"
if self.normalized:
str_repr += f", normalized={self.normalized}"
return str_repr
class STFT(STFTBase):
"""
Short-time Fourier Transform as a Layer
"""
def __init__(self, *args, **kwargs):
super(STFT, self).__init__(*args, inverse=False, **kwargs)
def forward(
self, wav: th.Tensor, return_polar: bool = False, eps: float = EPSILON
) -> th.Tensor:
"""
Accept (single or multiple channel) raw waveform and output magnitude and phase
Args
wav (Tensor) input signal, N x (C) x S
Return
transform (Tensor), N x (C) x F x T x 2
"""
if self.mode == "torch":
return _pytorch_stft(
wav,
self.frame_len,
self.frame_hop,
n_fft=(self.num_bins - 1) * 2,
return_polar=return_polar,
window=self.w,
normalized=self.normalized,
onesided=self.onesided,
center=self.center,
eps=eps,
)
else:
return _forward_stft(
wav,
self.K,
self.w,
return_polar=return_polar,
frame_hop=self.frame_hop,
pre_emphasis=self.pre_emphasis,
onesided=self.onesided,
center=self.center,
eps=eps,
)
class iSTFT(STFTBase):
"""
Inverse Short-time Fourier Transform as a Layer
"""
def __init__(self, *args, **kwargs):
super(iSTFT, self).__init__(*args, inverse=True, **kwargs)
def forward(
self, transform: th.Tensor, return_polar: bool = False, eps: float = EPSILON
) -> th.Tensor:
"""
Accept phase & magnitude and output raw waveform
Args
transform (Tensor): STFT output, N x F x T x 2
Return
s (Tensor): N x S
"""
if self.mode == "torch":
return _pytorch_istft(
transform,
self.frame_len,
self.frame_hop,
n_fft=(self.num_bins - 1) * 2,
return_polar=return_polar,
window=self.w,
normalized=self.normalized,
onesided=self.onesided,
center=self.center,
eps=eps,
)
else:
return _inverse_stft(
transform,
self.K,
self.w,
return_polar=return_polar,
frame_hop=self.frame_hop,
onesided=self.onesided,
center=self.center,
eps=eps,
)
|