Spaces:
Running
on
Zero
Running
on
Zero
Serhiy Stetskovych
commited on
Commit
·
98a6a49
1
Parent(s):
93c6a78
Use device variable
Browse files- app.py +3 -4
- inference.py +0 -150
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
import os
|
2 |
-
import torchaudio
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
@@ -9,6 +7,7 @@ import tqdm
|
|
9 |
|
10 |
import look2hear.models
|
11 |
from ml_collections import ConfigDict
|
|
|
12 |
|
13 |
def load_audio(file_path):
|
14 |
audio, samplerate = librosa.load(file_path, mono=False, sr=44100)
|
@@ -44,7 +43,7 @@ texts
|
|
44 |
|
45 |
|
46 |
apollo_config = get_config('configs/apollo.yaml')
|
47 |
-
apollo_model = look2hear.models.BaseModel.from_pretrain('weights/apollo.bin', **apollo_config['model']).
|
48 |
|
49 |
models = [
|
50 |
('MP3 restore', apollo_model)
|
@@ -87,7 +86,7 @@ def enchance(model, audio):
|
|
87 |
part = torch.nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
88 |
|
89 |
|
90 |
-
chunk = part.unsqueeze(0).
|
91 |
with torch.no_grad():
|
92 |
out = model(chunk).squeeze(0).squeeze(0).cpu()
|
93 |
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
|
|
7 |
|
8 |
import look2hear.models
|
9 |
from ml_collections import ConfigDict
|
10 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
|
12 |
def load_audio(file_path):
|
13 |
audio, samplerate = librosa.load(file_path, mono=False, sr=44100)
|
|
|
43 |
|
44 |
|
45 |
apollo_config = get_config('configs/apollo.yaml')
|
46 |
+
apollo_model = look2hear.models.BaseModel.from_pretrain('weights/apollo.bin', **apollo_config['model']).to(device)
|
47 |
|
48 |
models = [
|
49 |
('MP3 restore', apollo_model)
|
|
|
86 |
part = torch.nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
87 |
|
88 |
|
89 |
+
chunk = part.unsqueeze(0).to(device)
|
90 |
with torch.no_grad():
|
91 |
out = model(chunk).squeeze(0).squeeze(0).cpu()
|
92 |
|
inference.py
DELETED
@@ -1,150 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import librosa
|
4 |
-
import look2hear.models
|
5 |
-
import soundfile as sf
|
6 |
-
from tqdm.auto import tqdm
|
7 |
-
import argparse
|
8 |
-
import numpy as np
|
9 |
-
import yaml
|
10 |
-
from ml_collections import ConfigDict
|
11 |
-
#from omegaconf import OmegaConf
|
12 |
-
|
13 |
-
import warnings
|
14 |
-
warnings.filterwarnings("ignore")
|
15 |
-
|
16 |
-
def get_config(config_path):
|
17 |
-
with open(config_path) as f:
|
18 |
-
#config = OmegaConf.load(config_path)
|
19 |
-
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
|
20 |
-
return config
|
21 |
-
|
22 |
-
def load_audio(file_path):
|
23 |
-
audio, samplerate = librosa.load(file_path, mono=False, sr=44100)
|
24 |
-
print(f'INPUT audio.shape = {audio.shape} | samplerate = {samplerate}')
|
25 |
-
#audio = dBgain(audio, -6)
|
26 |
-
return torch.from_numpy(audio), samplerate
|
27 |
-
|
28 |
-
def save_audio(file_path, audio, samplerate=44100):
|
29 |
-
#audio = dBgain(audio, +6)
|
30 |
-
sf.write(file_path, audio.T, samplerate, subtype="PCM_16")
|
31 |
-
|
32 |
-
def process_chunk(chunk):
|
33 |
-
chunk = chunk.unsqueeze(0).cpu()
|
34 |
-
with torch.no_grad():
|
35 |
-
return model(chunk).squeeze(0).squeeze(0).cpu()
|
36 |
-
|
37 |
-
def _getWindowingArray(window_size, fade_size):
|
38 |
-
# IMPORTANT NOTE :
|
39 |
-
# no fades here in the end, only removing the failed ending of the chunk
|
40 |
-
fadein = torch.linspace(1, 1, fade_size)
|
41 |
-
fadeout = torch.linspace(0, 0, fade_size)
|
42 |
-
window = torch.ones(window_size)
|
43 |
-
window[-fade_size:] *= fadeout
|
44 |
-
window[:fade_size] *= fadein
|
45 |
-
return window
|
46 |
-
|
47 |
-
def dBgain(audio, volume_gain_dB):
|
48 |
-
gain = 10 ** (volume_gain_dB / 20)
|
49 |
-
gained_audio = audio * gain
|
50 |
-
return gained_audio
|
51 |
-
|
52 |
-
|
53 |
-
def main(input_wav, output_wav, ckpt_path):
|
54 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
|
55 |
-
|
56 |
-
global model
|
57 |
-
feature_dim = config['model']['feature_dim']
|
58 |
-
sr = config['model']['sr']
|
59 |
-
win = config['model']['win']
|
60 |
-
layer = config['model']['layer']
|
61 |
-
model = look2hear.models.BaseModel.from_pretrain(ckpt_path, sr=sr, win=win, feature_dim=feature_dim, layer=layer).cpu()
|
62 |
-
|
63 |
-
test_data, samplerate = load_audio(input_wav)
|
64 |
-
|
65 |
-
C = chunk_size * samplerate # chunk_size seconds to samples
|
66 |
-
N = overlap
|
67 |
-
step = C // N
|
68 |
-
fade_size = 3 * 44100 # 3 seconds
|
69 |
-
print(f"N = {N} | C = {C} | step = {step} | fade_size = {fade_size}")
|
70 |
-
|
71 |
-
border = C - step
|
72 |
-
|
73 |
-
# handle mono inputs correctly
|
74 |
-
if len(test_data.shape) == 1:
|
75 |
-
test_data = test_data.unsqueeze(0)
|
76 |
-
|
77 |
-
# Pad the input if necessary
|
78 |
-
if test_data.shape[1] > 2 * border and (border > 0):
|
79 |
-
test_data = torch.nn.functional.pad(test_data, (border, border), mode='reflect')
|
80 |
-
|
81 |
-
windowingArray = _getWindowingArray(C, fade_size)
|
82 |
-
|
83 |
-
result = torch.zeros((1,) + tuple(test_data.shape), dtype=torch.float32)
|
84 |
-
counter = torch.zeros((1,) + tuple(test_data.shape), dtype=torch.float32)
|
85 |
-
|
86 |
-
i = 0
|
87 |
-
progress_bar = tqdm(total=test_data.shape[1], desc="Processing audio chunks", leave=False)
|
88 |
-
|
89 |
-
while i < test_data.shape[1]:
|
90 |
-
part = test_data[:, i:i + C]
|
91 |
-
length = part.shape[-1]
|
92 |
-
if length < C:
|
93 |
-
if length > C // 2 + 1:
|
94 |
-
part = torch.nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
|
95 |
-
else:
|
96 |
-
part = torch.nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
97 |
-
|
98 |
-
out = process_chunk(part)
|
99 |
-
|
100 |
-
window = windowingArray
|
101 |
-
if i == 0: # First audio chunk, no fadein
|
102 |
-
window[:fade_size] = 1
|
103 |
-
elif i + C >= test_data.shape[1]: # Last audio chunk, no fadeout
|
104 |
-
window[-fade_size:] = 1
|
105 |
-
|
106 |
-
result[..., i:i+length] += out[..., :length] * window[..., :length]
|
107 |
-
counter[..., i:i+length] += window[..., :length]
|
108 |
-
|
109 |
-
i += step
|
110 |
-
progress_bar.update(step)
|
111 |
-
|
112 |
-
progress_bar.close()
|
113 |
-
|
114 |
-
final_output = result / counter
|
115 |
-
final_output = final_output.squeeze(0).numpy()
|
116 |
-
np.nan_to_num(final_output, copy=False, nan=0.0)
|
117 |
-
|
118 |
-
# Remove padding if added earlier
|
119 |
-
if test_data.shape[1] > 2 * border and (border > 0):
|
120 |
-
final_output = final_output[..., border:-border]
|
121 |
-
|
122 |
-
save_audio(output_wav, final_output, samplerate)
|
123 |
-
print(f'Success! Output file saved as {output_wav}')
|
124 |
-
|
125 |
-
# Memory clearing
|
126 |
-
model.cpu()
|
127 |
-
del model
|
128 |
-
torch.cuda.empty_cache()
|
129 |
-
|
130 |
-
if __name__ == "__main__":
|
131 |
-
parser = argparse.ArgumentParser(description="Audio Inference Script")
|
132 |
-
parser.add_argument("--in_wav", type=str, required=True, help="Path to input wav file")
|
133 |
-
parser.add_argument("--out_wav", type=str, required=True, help="Path to output wav file")
|
134 |
-
parser.add_argument("--ckpt", type=str, required=True, help="Path to model checkpoint file", default="model/pytorch_model.bin")
|
135 |
-
parser.add_argument("--config", type=str, help="Path to model config file", default="config/apollo.yaml")
|
136 |
-
parser.add_argument("--chunk_size", type=int, help="chunk size value in seconds", default=10)
|
137 |
-
parser.add_argument("--overlap", type=int, help="Overlap", default=2)
|
138 |
-
args = parser.parse_args()
|
139 |
-
|
140 |
-
ckpt_path = args.ckpt
|
141 |
-
chunk_size = args.chunk_size
|
142 |
-
overlap = args.overlap
|
143 |
-
config = get_config(args.config)
|
144 |
-
print(config['model'])
|
145 |
-
print(f'ckpt_path = {ckpt_path}')
|
146 |
-
#print(f'config = {config}')
|
147 |
-
print(f'chunk_size = {chunk_size}, overlap = {overlap}')
|
148 |
-
|
149 |
-
|
150 |
-
main(args.in_wav, args.out_wav, ckpt_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|