File size: 5,670 Bytes
81470e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81cbc69
81470e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81cbc69
 
81470e4
 
 
 
 
81cbc69
 
81470e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f2409
81470e4
 
81cbc69
81470e4
 
 
 
81cbc69
 
 
 
 
 
81470e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f2409
81470e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95f2409
81470e4
 
 
 
 
 
 
 
 
 
 
95f2409
81470e4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

import random
random.seed(0)

import numpy as np
np.random.seed(0)


import spaces
import yaml
import re
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
from ipa_uk import ipa
from unicodedata import normalize
from ukrainian_word_stress import Stressifier, StressSymbol
stressify = Stressifier()



from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()


device = 'cuda' if torch.cuda.is_available() else 'cpu'

to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask



config = yaml.safe_load(open('styletts_config.yml'))

# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)

# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)

# load BERT model
from Utils.PLBERT.util import load_plbert

plbert = load_plbert('weights/plbert.bin', 'Utils/PLBERT/config.yml')

model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]

params = torch.load('weights/filatov.bin', map_location='cpu')


for key in model:
    if key in params:
        print('%s loaded' % key)
        try:
            model[key].load_state_dict(params[key])
        except:
            from collections import OrderedDict
            state_dict = params[key]
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:] # remove `module.`
                new_state_dict[name] = v
            # load params
            model[key].load_state_dict(new_state_dict, strict=False)
#             except:
#                 _load(params[key], model[key])
_ = [model[key].eval() for key in model]

from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule

sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
    clamp=False
)


def split_to_parts(text):
    split_symbols = '.?!:'
    parts = ['']
    index = 0
    for s in text:
        parts[index] += s
        if s in split_symbols and len(parts[index]) > 150:
            index += 1
            parts.append('')
    return parts
    


def _inf(text, speed, s_prev, noise, alpha, diffusion_steps, embedding_scale):
    text = text.strip()
    text = text.replace('"', '')
    text = text.replace('+', '\u0301')
    text = normalize('NFKC', text)

    text = re.sub(r'[α †β€β€‘β€’β€“β€”β€•β»β‚‹βˆ’βΈΊβΈ»]', '-', text)
    text = re.sub(r' - ', ': ', text)
    stressed = stressify(text)

    
    ps = ipa(stressed)

    print(stressed)

    tokens = textclenaer(ps)
    tokens.insert(0, 0)
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
    
    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)
        text_mask = length_to_mask(input_lengths).to(tokens.device)

        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2) 

        s_pred = sampler(noise, 
              embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,
              embedding_scale=embedding_scale).squeeze(0)
        
        if s_prev is not None:
            # convex combination of previous and current style
            s_pred = alpha * s_prev + (1 - alpha) * s_pred
        
        s = s_pred[:, 128:]
        ref = s_pred[:, :128]

        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)

        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)
        duration = torch.sigmoid(duration).sum(axis=-1)/speed
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)

        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
        out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)), 
                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))
        
    return out.squeeze().cpu().numpy(), s_pred, ps


@spaces.GPU
def inference(text,  progress, speed = 1.0, alpha=0.7, diffusion_steps=10, embedding_scale=1.2):

    wavs = []
    s_prev = None

    #sentences = text.split('|')
    sentences = split_to_parts(text)
    print(sentences)
    phonemes = ''
    noise = torch.randn(1,1,256).to(device)
    for text in progress.tqdm(sentences):
        if text.strip() == "": continue
        wav, s_prev, ps = _inf(text, speed, s_prev, noise, alpha=alpha, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale)
        wavs.append(wav)
        phonemes += ' ' + ps
    return  np.concatenate(wavs), phonemes