Spaces:
Running
on
Zero
Running
on
Zero
from math import pi | |
from random import randint | |
from typing import Any, Optional, Sequence, Tuple, Union | |
import torch | |
from einops import rearrange | |
from torch import Tensor, nn | |
from tqdm import tqdm | |
from .utils import * | |
from .sampler import * | |
""" | |
Diffusion Classes (generic for 1d data) | |
""" | |
class Model1d(nn.Module): | |
def __init__(self, unet_type: str = "base", **kwargs): | |
super().__init__() | |
diffusion_kwargs, kwargs = groupby("diffusion_", kwargs) | |
self.unet = None | |
self.diffusion = None | |
def forward(self, x: Tensor, **kwargs) -> Tensor: | |
return self.diffusion(x, **kwargs) | |
def sample(self, *args, **kwargs) -> Tensor: | |
return self.diffusion.sample(*args, **kwargs) | |
""" | |
Audio Diffusion Classes (specific for 1d audio data) | |
""" | |
def get_default_model_kwargs(): | |
return dict( | |
channels=128, | |
patch_size=16, | |
multipliers=[1, 2, 4, 4, 4, 4, 4], | |
factors=[4, 4, 4, 2, 2, 2], | |
num_blocks=[2, 2, 2, 2, 2, 2], | |
attentions=[0, 0, 0, 1, 1, 1, 1], | |
attention_heads=8, | |
attention_features=64, | |
attention_multiplier=2, | |
attention_use_rel_pos=False, | |
diffusion_type="v", | |
diffusion_sigma_distribution=UniformDistribution(), | |
) | |
def get_default_sampling_kwargs(): | |
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True) | |
class AudioDiffusionModel(Model1d): | |
def __init__(self, **kwargs): | |
super().__init__(**{**get_default_model_kwargs(), **kwargs}) | |
def sample(self, *args, **kwargs): | |
return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs}) | |
class AudioDiffusionConditional(Model1d): | |
def __init__( | |
self, | |
embedding_features: int, | |
embedding_max_length: int, | |
embedding_mask_proba: float = 0.1, | |
**kwargs, | |
): | |
self.embedding_mask_proba = embedding_mask_proba | |
default_kwargs = dict( | |
**get_default_model_kwargs(), | |
unet_type="cfg", | |
context_embedding_features=embedding_features, | |
context_embedding_max_length=embedding_max_length, | |
) | |
super().__init__(**{**default_kwargs, **kwargs}) | |
def forward(self, *args, **kwargs): | |
default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba) | |
return super().forward(*args, **{**default_kwargs, **kwargs}) | |
def sample(self, *args, **kwargs): | |
default_kwargs = dict( | |
**get_default_sampling_kwargs(), | |
embedding_scale=5.0, | |
) | |
return super().sample(*args, **{**default_kwargs, **kwargs}) | |