Spaces:
Running
on
Zero
Running
on
Zero
#coding:utf-8 | |
import os | |
import os.path as osp | |
import copy | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from Utils.ASR.models import ASRCNN | |
from Utils.JDC.model import JDCNet | |
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution | |
from Modules.diffusion.modules import Transformer1d, StyleTransformer1d | |
from Modules.diffusion.diffusion import AudioDiffusionConditional | |
from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator | |
from munch import Munch | |
import yaml | |
class LearnedDownSample(nn.Module): | |
def __init__(self, layer_type, dim_in): | |
super().__init__() | |
self.layer_type = layer_type | |
if self.layer_type == 'none': | |
self.conv = nn.Identity() | |
elif self.layer_type == 'timepreserve': | |
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0))) | |
elif self.layer_type == 'half': | |
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1)) | |
else: | |
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
def forward(self, x): | |
return self.conv(x) | |
class LearnedUpSample(nn.Module): | |
def __init__(self, layer_type, dim_in): | |
super().__init__() | |
self.layer_type = layer_type | |
if self.layer_type == 'none': | |
self.conv = nn.Identity() | |
elif self.layer_type == 'timepreserve': | |
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) | |
elif self.layer_type == 'half': | |
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) | |
else: | |
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
def forward(self, x): | |
return self.conv(x) | |
class DownSample(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == 'none': | |
return x | |
elif self.layer_type == 'timepreserve': | |
return F.avg_pool2d(x, (2, 1)) | |
elif self.layer_type == 'half': | |
if x.shape[-1] % 2 != 0: | |
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
return F.avg_pool2d(x, 2) | |
else: | |
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
class UpSample(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == 'none': | |
return x | |
elif self.layer_type == 'timepreserve': | |
return F.interpolate(x, scale_factor=(2, 1), mode='nearest') | |
elif self.layer_type == 'half': | |
return F.interpolate(x, scale_factor=2, mode='nearest') | |
else: | |
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
class ResBlk(nn.Module): | |
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
normalize=False, downsample='none'): | |
super().__init__() | |
self.actv = actv | |
self.normalize = normalize | |
self.downsample = DownSample(downsample) | |
self.downsample_res = LearnedDownSample(downsample, dim_in) | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out) | |
def _build_weights(self, dim_in, dim_out): | |
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1)) | |
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1)) | |
if self.normalize: | |
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) | |
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) | |
if self.learned_sc: | |
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def _shortcut(self, x): | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
if self.downsample: | |
x = self.downsample(x) | |
return x | |
def _residual(self, x): | |
if self.normalize: | |
x = self.norm1(x) | |
x = self.actv(x) | |
x = self.conv1(x) | |
x = self.downsample_res(x) | |
if self.normalize: | |
x = self.norm2(x) | |
x = self.actv(x) | |
x = self.conv2(x) | |
return x | |
def forward(self, x): | |
x = self._shortcut(x) + self._residual(x) | |
return x / math.sqrt(2) # unit variance | |
class StyleEncoder(nn.Module): | |
def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): | |
super().__init__() | |
blocks = [] | |
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
repeat_num = 4 | |
for _ in range(repeat_num): | |
dim_out = min(dim_in*2, max_conv_dim) | |
blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
dim_in = dim_out | |
blocks += [nn.LeakyReLU(0.2)] | |
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
blocks += [nn.AdaptiveAvgPool2d(1)] | |
blocks += [nn.LeakyReLU(0.2)] | |
self.shared = nn.Sequential(*blocks) | |
self.unshared = nn.Linear(dim_out, style_dim) | |
def forward(self, x): | |
h = self.shared(x) | |
h = h.view(h.size(0), -1) | |
s = self.unshared(h) | |
return s | |
class LinearNorm(torch.nn.Module): | |
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
super(LinearNorm, self).__init__() | |
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
torch.nn.init.xavier_uniform_( | |
self.linear_layer.weight, | |
gain=torch.nn.init.calculate_gain(w_init_gain)) | |
def forward(self, x): | |
return self.linear_layer(x) | |
class Discriminator2d(nn.Module): | |
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4): | |
super().__init__() | |
blocks = [] | |
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))] | |
for lid in range(repeat_num): | |
dim_out = min(dim_in*2, max_conv_dim) | |
blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
dim_in = dim_out | |
blocks += [nn.LeakyReLU(0.2)] | |
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))] | |
blocks += [nn.LeakyReLU(0.2)] | |
blocks += [nn.AdaptiveAvgPool2d(1)] | |
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))] | |
self.main = nn.Sequential(*blocks) | |
def get_feature(self, x): | |
features = [] | |
for l in self.main: | |
x = l(x) | |
features.append(x) | |
out = features[-1] | |
out = out.view(out.size(0), -1) # (batch, num_domains) | |
return out, features | |
def forward(self, x): | |
out, features = self.get_feature(x) | |
out = out.squeeze() # (batch) | |
return out, features | |
class ResBlk1d(nn.Module): | |
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
normalize=False, downsample='none', dropout_p=0.2): | |
super().__init__() | |
self.actv = actv | |
self.normalize = normalize | |
self.downsample_type = downsample | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out) | |
self.dropout_p = dropout_p | |
if self.downsample_type == 'none': | |
self.pool = nn.Identity() | |
else: | |
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) | |
def _build_weights(self, dim_in, dim_out): | |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) | |
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
if self.normalize: | |
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) | |
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) | |
if self.learned_sc: | |
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def downsample(self, x): | |
if self.downsample_type == 'none': | |
return x | |
else: | |
if x.shape[-1] % 2 != 0: | |
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
return F.avg_pool1d(x, 2) | |
def _shortcut(self, x): | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
x = self.downsample(x) | |
return x | |
def _residual(self, x): | |
if self.normalize: | |
x = self.norm1(x) | |
x = self.actv(x) | |
x = F.dropout(x, p=self.dropout_p, training=self.training) | |
x = self.conv1(x) | |
x = self.pool(x) | |
if self.normalize: | |
x = self.norm2(x) | |
x = self.actv(x) | |
x = F.dropout(x, p=self.dropout_p, training=self.training) | |
x = self.conv2(x) | |
return x | |
def forward(self, x): | |
x = self._shortcut(x) + self._residual(x) | |
return x / math.sqrt(2) # unit variance | |
class LayerNorm(nn.Module): | |
def __init__(self, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.gamma = nn.Parameter(torch.ones(channels)) | |
self.beta = nn.Parameter(torch.zeros(channels)) | |
def forward(self, x): | |
x = x.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
return x.transpose(1, -1) | |
class TextEncoder(nn.Module): | |
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): | |
super().__init__() | |
self.embedding = nn.Embedding(n_symbols, channels) | |
padding = (kernel_size - 1) // 2 | |
self.cnn = nn.ModuleList() | |
for _ in range(depth): | |
self.cnn.append(nn.Sequential( | |
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), | |
LayerNorm(channels), | |
actv, | |
nn.Dropout(0.2), | |
)) | |
# self.cnn = nn.Sequential(*self.cnn) | |
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) | |
def forward(self, x, input_lengths, m): | |
x = self.embedding(x) # [B, T, emb] | |
x = x.transpose(1, 2) # [B, emb, T] | |
m = m.to(input_lengths.device).unsqueeze(1) | |
x.masked_fill_(m, 0.0) | |
for c in self.cnn: | |
x = c(x) | |
x.masked_fill_(m, 0.0) | |
x = x.transpose(1, 2) # [B, T, chn] | |
input_lengths = input_lengths.cpu().numpy() | |
x = nn.utils.rnn.pack_padded_sequence( | |
x, input_lengths, batch_first=True, enforce_sorted=False) | |
self.lstm.flatten_parameters() | |
x, _ = self.lstm(x) | |
x, _ = nn.utils.rnn.pad_packed_sequence( | |
x, batch_first=True) | |
x = x.transpose(-1, -2) | |
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
x_pad[:, :, :x.shape[-1]] = x | |
x = x_pad.to(x.device) | |
x.masked_fill_(m, 0.0) | |
return x | |
def inference(self, x): | |
x = self.embedding(x) | |
x = x.transpose(1, 2) | |
x = self.cnn(x) | |
x = x.transpose(1, 2) | |
self.lstm.flatten_parameters() | |
x, _ = self.lstm(x) | |
return x | |
def length_to_mask(self, lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
class AdaIN1d(nn.Module): | |
def __init__(self, style_dim, num_features): | |
super().__init__() | |
self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
self.fc = nn.Linear(style_dim, num_features*2) | |
def forward(self, x, s): | |
h = self.fc(s) | |
h = h.view(h.size(0), h.size(1), 1) | |
gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
return (1 + gamma) * self.norm(x) + beta | |
class UpSample1d(nn.Module): | |
def __init__(self, layer_type): | |
super().__init__() | |
self.layer_type = layer_type | |
def forward(self, x): | |
if self.layer_type == 'none': | |
return x | |
else: | |
return F.interpolate(x, scale_factor=2, mode='nearest') | |
class AdainResBlk1d(nn.Module): | |
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), | |
upsample='none', dropout_p=0.0): | |
super().__init__() | |
self.actv = actv | |
self.upsample_type = upsample | |
self.upsample = UpSample1d(upsample) | |
self.learned_sc = dim_in != dim_out | |
self._build_weights(dim_in, dim_out, style_dim) | |
self.dropout = nn.Dropout(dropout_p) | |
if upsample == 'none': | |
self.pool = nn.Identity() | |
else: | |
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) | |
def _build_weights(self, dim_in, dim_out, style_dim): | |
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
self.norm1 = AdaIN1d(style_dim, dim_in) | |
self.norm2 = AdaIN1d(style_dim, dim_out) | |
if self.learned_sc: | |
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
def _shortcut(self, x): | |
x = self.upsample(x) | |
if self.learned_sc: | |
x = self.conv1x1(x) | |
return x | |
def _residual(self, x, s): | |
x = self.norm1(x, s) | |
x = self.actv(x) | |
x = self.pool(x) | |
x = self.conv1(self.dropout(x)) | |
x = self.norm2(x, s) | |
x = self.actv(x) | |
x = self.conv2(self.dropout(x)) | |
return x | |
def forward(self, x, s): | |
out = self._residual(x, s) | |
out = (out + self._shortcut(x)) / math.sqrt(2) | |
return out | |
class AdaLayerNorm(nn.Module): | |
def __init__(self, style_dim, channels, eps=1e-5): | |
super().__init__() | |
self.channels = channels | |
self.eps = eps | |
self.fc = nn.Linear(style_dim, channels*2) | |
def forward(self, x, s): | |
x = x.transpose(-1, -2) | |
x = x.transpose(1, -1) | |
h = self.fc(s) | |
h = h.view(h.size(0), h.size(1), 1) | |
gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
x = (1 + gamma) * x + beta | |
return x.transpose(1, -1).transpose(-1, -2) | |
class ProsodyPredictor(nn.Module): | |
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
super().__init__() | |
self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
d_model=d_hid, | |
nlayers=nlayers, | |
dropout=dropout) | |
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
self.duration_proj = LinearNorm(d_hid, max_dur) | |
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
self.F0 = nn.ModuleList() | |
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
self.N = nn.ModuleList() | |
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
def forward(self, texts, style, text_lengths, alignment, m): | |
d = self.text_encoder(texts, style, text_lengths, m) | |
batch_size = d.shape[0] | |
text_size = d.shape[1] | |
# predict duration | |
input_lengths = text_lengths.cpu().numpy() | |
x = nn.utils.rnn.pack_padded_sequence( | |
d, input_lengths, batch_first=True, enforce_sorted=False) | |
m = m.to(text_lengths.device).unsqueeze(1) | |
self.lstm.flatten_parameters() | |
x, _ = self.lstm(x) | |
x, _ = nn.utils.rnn.pad_packed_sequence( | |
x, batch_first=True) | |
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
x_pad[:, :x.shape[1], :] = x | |
x = x_pad.to(x.device) | |
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) | |
en = (d.transpose(-1, -2) @ alignment) | |
return duration.squeeze(-1), en | |
def F0Ntrain(self, x, s): | |
x, _ = self.shared(x.transpose(-1, -2)) | |
F0 = x.transpose(-1, -2) | |
for block in self.F0: | |
F0 = block(F0, s) | |
F0 = self.F0_proj(F0) | |
N = x.transpose(-1, -2) | |
for block in self.N: | |
N = block(N, s) | |
N = self.N_proj(N) | |
return F0.squeeze(1), N.squeeze(1) | |
def length_to_mask(self, lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
class DurationEncoder(nn.Module): | |
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): | |
super().__init__() | |
self.lstms = nn.ModuleList() | |
for _ in range(nlayers): | |
self.lstms.append(nn.LSTM(d_model + sty_dim, | |
d_model // 2, | |
num_layers=1, | |
batch_first=True, | |
bidirectional=True, | |
dropout=dropout)) | |
self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
self.dropout = dropout | |
self.d_model = d_model | |
self.sty_dim = sty_dim | |
def forward(self, x, style, text_lengths, m): | |
masks = m.to(text_lengths.device) | |
x = x.permute(2, 0, 1) | |
s = style.expand(x.shape[0], x.shape[1], -1) | |
x = torch.cat([x, s], axis=-1) | |
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) | |
x = x.transpose(0, 1) | |
input_lengths = text_lengths.cpu().numpy() | |
x = x.transpose(-1, -2) | |
for block in self.lstms: | |
if isinstance(block, AdaLayerNorm): | |
x = block(x.transpose(-1, -2), style).transpose(-1, -2) | |
x = torch.cat([x, s.permute(1, -1, 0)], axis=1) | |
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) | |
else: | |
x = x.transpose(-1, -2) | |
x = nn.utils.rnn.pack_padded_sequence( | |
x, input_lengths, batch_first=True, enforce_sorted=False) | |
block.flatten_parameters() | |
x, _ = block(x) | |
x, _ = nn.utils.rnn.pad_packed_sequence( | |
x, batch_first=True) | |
x = F.dropout(x, p=self.dropout, training=self.training) | |
x = x.transpose(-1, -2) | |
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
x_pad[:, :, :x.shape[-1]] = x | |
x = x_pad.to(x.device) | |
return x.transpose(-1, -2) | |
def inference(self, x, style): | |
x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
style = style.expand(x.shape[0], x.shape[1], -1) | |
x = torch.cat([x, style], axis=-1) | |
src = self.pos_encoder(x) | |
output = self.transformer_encoder(src).transpose(0, 1) | |
return output | |
def length_to_mask(self, lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def load_F0_models(path): | |
# load F0 model | |
F0_model = JDCNet(num_class=1, seq_len=192) | |
params = torch.load(path, map_location='cpu') | |
F0_model.load_state_dict(params) | |
_ = F0_model.train() | |
return F0_model | |
def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG): | |
# load ASR model | |
def _load_config(path): | |
with open(path) as f: | |
config = yaml.safe_load(f) | |
model_config = config['model_params'] | |
return model_config | |
def _load_model(model_config, model_path): | |
model = ASRCNN(**model_config) | |
params = torch.load(model_path, map_location='cpu') | |
model.load_state_dict(params) | |
return model | |
asr_model_config = _load_config(ASR_MODEL_CONFIG) | |
asr_model = _load_model(asr_model_config, ASR_MODEL_PATH) | |
_ = asr_model.train() | |
return asr_model | |
def build_model(args, text_aligner, pitch_extractor, bert): | |
assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown' | |
if args.decoder.type == "istftnet": | |
from Modules.istftnet import Decoder | |
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
upsample_rates = args.decoder.upsample_rates, | |
upsample_initial_channel=args.decoder.upsample_initial_channel, | |
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, | |
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size) | |
else: | |
from Modules.hifigan import Decoder | |
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
upsample_rates = args.decoder.upsample_rates, | |
upsample_initial_channel=args.decoder.upsample_initial_channel, | |
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes) | |
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token) | |
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout) | |
style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder | |
predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder | |
# define diffusion model | |
if args.multispeaker: | |
transformer = StyleTransformer1d(channels=args.style_dim*2, | |
context_embedding_features=bert.config.hidden_size, | |
context_features=args.style_dim*2, | |
**args.diffusion.transformer) | |
else: | |
transformer = Transformer1d(channels=args.style_dim*2, | |
context_embedding_features=bert.config.hidden_size, | |
**args.diffusion.transformer) | |
diffusion = AudioDiffusionConditional( | |
in_channels=1, | |
embedding_max_length=bert.config.max_position_embeddings, | |
embedding_features=bert.config.hidden_size, | |
embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements, | |
channels=args.style_dim*2, | |
context_features=args.style_dim*2, | |
) | |
diffusion.diffusion = KDiffusion( | |
net=diffusion.unet, | |
sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std), | |
sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model | |
dynamic_threshold=0.0 | |
) | |
diffusion.diffusion.net = transformer | |
diffusion.unet = transformer | |
nets = Munch( | |
bert=bert, | |
bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim), | |
predictor=predictor, | |
decoder=decoder, | |
text_encoder=text_encoder, | |
predictor_encoder=predictor_encoder, | |
style_encoder=style_encoder, | |
diffusion=diffusion, | |
text_aligner = text_aligner, | |
pitch_extractor=pitch_extractor, | |
mpd = MultiPeriodDiscriminator(), | |
msd = MultiResSpecDiscriminator(), | |
# slm discriminator head | |
wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel), | |
) | |
return nets | |
def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]): | |
state = torch.load(path, map_location='cpu') | |
params = state['net'] | |
for key in model: | |
if key in params and key not in ignore_modules: | |
print('%s loaded' % key) | |
model[key].load_state_dict(params[key], strict=False) | |
_ = [model[key].eval() for key in model] | |
if not load_only_params: | |
epoch = state["epoch"] | |
iters = state["iters"] | |
optimizer.load_state_dict(state["optimizer"]) | |
else: | |
epoch = 0 | |
iters = 0 | |
return model, optimizer, epoch, iters | |