styletts2-ukrainian / verbalizer.py
Serhiy Stetskovych
More and better voices, faster because no diffusion at inferrence.
c1ee666
import onnxruntime
import numpy as np
from transformers import AutoTokenizer
from huggingface_hub import hf_hub_download
verbalizer_model_name = "skypro1111/mbart-large-50-verbalization"
def cache_model_from_hf(repo_id, model_dir="./"):
"""Download ONNX models from HuggingFace Hub."""
files = ["onnx/encoder_model.onnx", "onnx/decoder_model.onnx", "onnx/decoder_model.onnx_data"]
for file in files:
hf_hub_download(
repo_id=repo_id,
filename=file,
local_dir=model_dir,
)
class Verbalizer():
def __init__(self, device):
cache_model_from_hf(verbalizer_model_name)
print("Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(verbalizer_model_name)
self.tokenizer.src_lang = "uk_UA"
self.tokenizer.tgt_lang = "uk_UA"
print("Creating ONNX sessions...")
self.encoder_session = self.create_onnx_session("onnx/encoder_model.onnx", device=='cuda')
self.decoder_session = self.create_onnx_session("onnx/decoder_model.onnx", device=='cuda')
def create_onnx_session(self, model_path, use_gpu=True):
"""Create an ONNX inference session."""
session_options = onnxruntime.SessionOptions()
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
session_options.enable_mem_pattern = True
session_options.enable_mem_reuse = True
session_options.intra_op_num_threads = 8
#session_options.log_severity_level = 1
cuda_provider_options = {
'device_id': 0,
'arena_extend_strategy': 'kSameAsRequested',
'gpu_mem_limit': 0, # 0 means no limit
'cudnn_conv_algo_search': 'DEFAULT',
'do_copy_in_default_stream': True,
}
if use_gpu and 'CUDAExecutionProvider' in onnxruntime.get_available_providers():
providers = [('CUDAExecutionProvider', cuda_provider_options)]
else:
providers = ['CPUExecutionProvider']
session = onnxruntime.InferenceSession(
model_path,
providers=providers,
sess_options=session_options
)
return session
def generate_text(self, text):
"""Generate text for a single input."""
# Prepare input
inputs = self.tokenizer(text, return_tensors="np", padding=True, truncation=True, max_length=512)
input_ids = inputs["input_ids"].astype(np.int64)
attention_mask = inputs["attention_mask"].astype(np.int64)
# Run encoder
encoder_outputs = self.encoder_session.run(
output_names=["last_hidden_state"],
input_feed={
"input_ids": input_ids,
"attention_mask": attention_mask,
}
)[0]
# Initialize decoder input
decoder_input_ids = np.array([[self.tokenizer.pad_token_id]], dtype=np.int64)
# Generate sequence
for _ in range(512):
# Run decoder
decoder_outputs = self.decoder_session.run(
output_names=["logits"],
input_feed={
"input_ids": decoder_input_ids,
"encoder_hidden_states": encoder_outputs,
"encoder_attention_mask": attention_mask,
}
)[0]
# Get next token
next_token = decoder_outputs[:, -1:].argmax(axis=-1)
decoder_input_ids = np.concatenate([decoder_input_ids, next_token], axis=-1)
# Check if sequence is complete
if self.tokenizer.eos_token_id in decoder_input_ids[0]:
break
# Decode sequence
output_text = self.tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True)
return output_text