Spaces:
Configuration error
Configuration error
File size: 7,310 Bytes
d53b325 5da935d 2898d37 d53b325 9bc766a fd49873 d53b325 2898d37 91c8f98 fd49873 9bc766a 2898d37 9bc766a 0111e58 2898d37 9bc766a 2898d37 9bc766a 2898d37 9bc766a 2898d37 9bc766a 2898d37 0111e58 6e8a124 9bc766a 91c8f98 2898d37 9bc766a 2898d37 6e8a124 2898d37 6e8a124 2898d37 6e8a124 9bc766a 2898d37 9bc766a 6e8a124 91c8f98 6e8a124 2898d37 6e8a124 9bc766a 2898d37 6e8a124 91c8f98 fd49873 d53b325 c0a5ec1 d53b325 9bc766a c0a5ec1 d53b325 91c8f98 d53b325 aae0d96 c0a5ec1 9bc766a fd49873 d53b325 fd49873 3910298 9bc766a 3910298 fd49873 3910298 fd49873 3910298 d53b325 e13fea5 c0a5ec1 3910298 fd49873 91c8f98 d53b325 91c8f98 d53b325 91c8f98 6e8a124 2898d37 e13fea5 fd49873 6e8a124 d53b325 33a37e4 91c8f98 d53b325 98f1f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from smolagents.tools import Tool
import pronouncing
import json
import string
class ParodyWordSuggestionTool(Tool):
name = "parody_word_suggester"
description = "Suggests rhyming funny words using CMU dictionary pronunciations."
inputs = {'target': {'type': 'string', 'description': 'The word you want to find rhyming alternatives for'}, 'word_list_str': {'type': 'string', 'description': 'JSON string of word list (e.g. \'["word1", "word2"]\')'}, 'min_similarity': {'type': 'string', 'description': 'Minimum similarity threshold (0.0-1.0)', 'nullable': True, 'default': '0.5'}, 'custom_phones': {'type': 'object', 'description': 'Optional dictionary of custom word pronunciations', 'nullable': True, 'default': None}}
output_type = "string"
RHYME_WEIGHT = 0.5
PHONE_SEQUENCE_WEIGHT = 0.3
LENGTH_WEIGHT = 0.2
def _get_word_phones(self, word, custom_phones=None):
"""Get phones for a word, checking custom dictionary first."""
if custom_phones and word in custom_phones:
return custom_phones[word]["primary_phones"]
import pronouncing
phones = pronouncing.phones_for_word(word)
return phones[0] if phones else None
def _get_primary_vowel(self, phones: list) -> str:
"""Get the primary stressed vowel from phone list."""
v = ""
for phone in phones:
if '1' in phone and any(v in phone for v in 'AEIOU'):
return phone.rstrip('012')
return None
def _calculate_phone_sequence_similarity(self, phones1: list, phones2: list) -> float:
"""Calculate similarity based on matching phones in sequence."""
p = ""
if not phones1 or not phones2:
return 0.0
# Strip stress markers for comparison
clean_phones1 = [p.rstrip('012') for p in phones1]
clean_phones2 = [p.rstrip('012') for p in phones2]
matches = 0
total_comparisons = max(len(clean_phones1), len(clean_phones2))
# Compare phones in sequence
for i in range(min(len(clean_phones1), len(clean_phones2))):
if clean_phones1[i] == clean_phones2[i]:
matches += 1
return matches / total_comparisons if total_comparisons > 0 else 0.0
def _calculate_length_similarity(self, phones1: list, phones2: list) -> float:
"""Calculate similarity based on phone length."""
max_length = max(len(phones1), len(phones2))
length_diff = abs(len(phones1) - len(phones2))
return 1.0 - (length_diff / max_length) if max_length > 0 else 0.0
def _calculate_similarity(self, word1, phones1, word2, phones2):
"""Calculate similarity based on multiple factors."""
# Initialize phone lists
phone_list1 = phones1.split()
phone_list2 = phones2.split()
# 1. Rhyme score (50%) - based on primary vowel
vowel1 = self._get_primary_vowel(phone_list1)
vowel2 = self._get_primary_vowel(phone_list2)
rhyme_score = 1.0 if vowel1 and vowel2 and vowel1 == vowel2 else 0.0
# 2. Phone sequence similarity (30%)
phone_sequence_score = self._calculate_phone_sequence_similarity(phone_list1, phone_list2)
# 3. Length similarity (20%)
length_score = self._calculate_length_similarity(phone_list1, phone_list2)
# Combined weighted score
similarity = (
(rhyme_score * self.RHYME_WEIGHT) +
(phone_sequence_score * self.PHONE_SEQUENCE_WEIGHT) +
(length_score * self.LENGTH_WEIGHT)
)
return {
"similarity": round(similarity, 3),
"rhyme_score": round(rhyme_score, 3),
"phone_sequence_score": round(phone_sequence_score, 3),
"length_score": round(length_score, 3),
"details": {
"primary_vowel1": vowel1,
"primary_vowel2": vowel2,
"phone_count1": len(phone_list1),
"phone_count2": len(phone_list2),
"matching_phones": round(phone_sequence_score * len(phone_list1))
}
}
def forward(self, target: str, word_list_str: str, min_similarity: str = "0.5", custom_phones: dict = None) -> str:
import pronouncing
import string
import json
# Initialize variables
target = target.lower().strip(string.punctuation)
min_similarity = float(min_similarity)
suggestions = []
valid_words = []
invalid_words = []
# Parse JSON string to list
try:
words = json.loads(word_list_str)
except json.JSONDecodeError:
return json.dumps({
"error": "Invalid JSON string for word_list_str",
"suggestions": []
}, indent=2)
# Get target pronunciation
target_phones = self._get_word_phones(target, custom_phones)
if not target_phones:
return json.dumps({
"error": f"Target word '{target}' not found in dictionary or custom phones",
"suggestions": []
}, indent=2)
# Filter word list
for word in words:
word = word.lower().strip(string.punctuation)
if self._get_word_phones(word, custom_phones):
valid_words.append(word)
else:
invalid_words.append(word)
if not valid_words:
return json.dumps({
"error": "No valid words found in dictionary or custom phones",
"invalid_words": invalid_words,
"suggestions": []
}, indent=2)
# Check each word
for word in valid_words:
word_phones = self._get_word_phones(word, custom_phones)
if word_phones:
similarity_result = self._calculate_similarity(word, word_phones, target, target_phones)
if similarity_result["similarity"] >= min_similarity:
suggestions.append({
"word": word,
"similarity": similarity_result["similarity"],
"rhyme_score": similarity_result["rhyme_score"],
"phone_sequence_score": similarity_result["phone_sequence_score"],
"length_score": similarity_result["length_score"],
"phones": word_phones,
"is_custom": word in custom_phones if custom_phones else False,
"details": similarity_result["details"]
})
# Sort by similarity score descending
suggestions.sort(key=lambda x: x["similarity"], reverse=True)
result = {
"target": target,
"target_phones": target_phones,
"invalid_words": invalid_words,
"suggestions": suggestions
}
return json.dumps(result, indent=2)
def __init__(self, *args, **kwargs):
self.is_initialized = False
|