Spaces:
Configuration error
Configuration error
from smolagents.tools import Tool | |
import pronouncing | |
import json | |
import string | |
import difflib | |
class ParodyWordSuggestionTool(Tool): | |
name = "parody_word_suggester" | |
description = """Suggests rhyming funny words using CMU dictionary pronunciations. | |
Returns similar-sounding words that rhyme, especially focusing on common vowel sounds.""" | |
inputs = {'target': {'type': 'string', 'description': 'The word you want to find rhyming alternatives for'}, 'word_list_str': {'type': 'string', 'description': 'JSON string of word list (e.g. \'["word1", "word2"]\')'}, 'min_similarity': {'type': 'string', 'description': 'Minimum similarity threshold (0.0-1.0)', 'nullable': True, 'default': '0.5'}} | |
output_type = "string" | |
VOWEL_REF = "AH,AX|UH|AE,EH|IY,IH|AO,AA|UW|AY,EY|OW,AO|AW,AO|OY,OW|ER,AXR" | |
CONSONANT_REF = "M,N,NG|P,B|T,D|K,G|F,V|TH,DH|S,Z|SH,ZH|L,R|W,Y" | |
def _get_vowel_groups(self): | |
groups = [] | |
group_strs = self.VOWEL_REF.split("|") | |
for group_str in group_strs: | |
groups.append(group_str.split(",")) | |
return groups | |
def _get_consonant_groups(self): | |
groups = [] | |
group_strs = self.CONSONANT_REF.split("|") | |
for group_str in group_strs: | |
groups.append(group_str.split(",")) | |
return groups | |
def _get_last_syllable(self, phones: list) -> tuple: | |
"""Extract the last syllable (vowel + remaining consonants).""" | |
last_vowel_idx = -1 | |
last_vowel = None | |
vowel_groups = self._get_vowel_groups() | |
for i, phone in enumerate(phones): | |
base_phone = phone.rstrip('012') | |
for group in vowel_groups: | |
if base_phone in group: | |
last_vowel_idx = i | |
last_vowel = base_phone | |
break | |
if last_vowel_idx == -1: | |
return None, [] | |
remaining = phones[last_vowel_idx + 1:] | |
return last_vowel, remaining | |
def _strip_stress(self, phones: list) -> list: | |
result = [] | |
for phone in phones: | |
result.append(phone.rstrip('012')) | |
return result | |
def _vowels_match(self, v1: str, v2: str) -> bool: | |
v1 = v1.rstrip('012') | |
v2 = v2.rstrip('012') | |
if v1 == v2: | |
return True | |
vowel_groups = self._get_vowel_groups() | |
for group in vowel_groups: | |
if v1 in group and v2 in group: | |
return True | |
return False | |
def _calculate_similarity(self, word1, phones1, word2, phones2): | |
"""Calculate similarity with heavy emphasis on rhyming.""" | |
from difflib import SequenceMatcher | |
import pronouncing | |
# Initialize all variables | |
rhyme_score = 0.0 | |
string_score = 0.0 | |
pattern_score = 0.0 | |
phone_list1 = [] | |
phone_list2 = [] | |
vowel1 = None | |
vowel2 = None | |
end1 = [] | |
end2 = [] | |
end1_clean = [] | |
end2_clean = [] | |
matching_consonants = 0 | |
phone_list1 = phones1.split() | |
phone_list2 = phones2.split() | |
# Get last syllables | |
vowel1, end1 = self._get_last_syllable(phone_list1) | |
vowel2, end2 = self._get_last_syllable(phone_list2) | |
# Calculate rhyme score (60%) | |
if vowel1 and vowel2: | |
# Perfect vowel match | |
if vowel1.rstrip('012') == vowel2.rstrip('012'): | |
rhyme_score = 1.0 | |
# Similar vowel match | |
elif self._vowels_match(vowel1, vowel2): | |
rhyme_score = 0.8 | |
# Check endings | |
if end1 and end2: | |
end1_clean = self._strip_stress(end1) | |
end2_clean = self._strip_stress(end2) | |
# Perfect ending match | |
if end1_clean == end2_clean: | |
rhyme_score = min(1.0, rhyme_score + 0.2) | |
# Partial ending match | |
else: | |
consonant_groups = self._get_consonant_groups() | |
matching_consonants = 0 | |
for c1, c2 in zip(end1_clean, end2_clean): | |
if c1 == c2: | |
matching_consonants += 1 | |
else: | |
# Check if consonants are in same group | |
for group in consonant_groups: | |
if c1 in group and c2 in group: | |
matching_consonants += 0.5 | |
break | |
if matching_consonants > 0: | |
rhyme_score = min(1.0, rhyme_score + (0.1 * matching_consonants)) | |
# String similarity (25%) | |
if len(word1) > 1 and len(word2) > 1: | |
end_similarity = SequenceMatcher(None, word1[1:], word2[1:]).ratio() | |
string_score = end_similarity | |
else: | |
string_score = SequenceMatcher(None, word1, word2).ratio() | |
# Pattern/Length score (15%) | |
if len(phone_list1) == len(phone_list2): | |
pattern_score = 1.0 | |
else: | |
pattern_score = 1.0 - (abs(len(phone_list1) - len(phone_list2)) / max(len(phone_list1), len(phone_list2))) | |
# Final weighted score | |
similarity = ( | |
(rhyme_score * 0.60) + | |
(string_score * 0.25) + | |
(pattern_score * 0.15) | |
) | |
# Extra boost for exact matches minus first letter | |
if len(word1) == len(word2) and word1[1:] == word2[1:]: | |
similarity = min(1.0, similarity * 1.2) | |
# Extra penalty for very different lengths | |
if abs(len(word1) - len(word2)) > 2: | |
similarity *= 0.7 | |
return { | |
"similarity": round(similarity, 3), | |
"rhyme_score": round(rhyme_score, 3), | |
"string_score": round(string_score, 3), | |
"pattern_score": round(pattern_score, 3), | |
"details": { | |
"last_vowel_match": vowel1.rstrip('012') == vowel2.rstrip('012') if vowel1 and vowel2 else False, | |
"similar_vowels": self._vowels_match(vowel1, vowel2) if vowel1 and vowel2 else False, | |
"ending_match": " ".join(end1_clean) == " ".join(end2_clean) if end1 and end2 else False, | |
"string_length_diff": abs(len(word1) - len(word2)) | |
} | |
} | |
def forward(self, target: str, word_list_str: str, min_similarity: str = "0.5") -> str: | |
import pronouncing | |
import string | |
import json | |
# Initialize all variables | |
target = target.lower().strip(string.punctuation) | |
min_similarity = float(min_similarity) | |
suggestions = [] | |
word_vowel = None | |
word_end = [] | |
target_vowel = None | |
target_end = [] | |
valid_words = [] | |
invalid_words = [] | |
target_phone_list = [] | |
words = [] | |
target_phones = "" | |
word_phones = "" | |
word = "" | |
word_phone_list = [] | |
similarity_result = {} | |
# Parse JSON string to list | |
try: | |
words = json.loads(word_list_str) | |
except json.JSONDecodeError: | |
return json.dumps({ | |
"error": "Invalid JSON string for word_list_str", | |
"suggestions": [] | |
}, indent=2) | |
# Get target pronunciation | |
target_phones = pronouncing.phones_for_word(target) | |
if not target_phones: | |
return json.dumps({ | |
"error": f"Target word '{target}' not found in CMU dictionary", | |
"suggestions": [] | |
}, indent=2) | |
# Filter word list to only words in CMU dictionary | |
valid_words = [] | |
invalid_words = [] | |
for word in words: | |
word = word.lower().strip(string.punctuation) | |
if pronouncing.phones_for_word(word): | |
valid_words.append(word) | |
else: | |
invalid_words.append(word) | |
if not valid_words: | |
return json.dumps({ | |
"error": "No valid words found in CMU dictionary", | |
"invalid_words": invalid_words, | |
"suggestions": [] | |
}, indent=2) | |
target_phones = target_phones[0] | |
target_phone_list = target_phones.split() | |
target_vowel, target_end = self._get_last_syllable(target_phone_list) | |
# Check each word | |
for word in valid_words: | |
phones = pronouncing.phones_for_word(word) | |
if phones: | |
word_phones = phones[0] | |
similarity_result = self._calculate_similarity(word, word_phones, target, target_phones) | |
if similarity_result["similarity"] >= min_similarity: | |
word_phone_list = word_phones.split() | |
word_vowel, word_end = self._get_last_syllable(word_phone_list) | |
suggestions.append({ | |
"word": word, | |
"similarity": similarity_result["similarity"], | |
"rhyme_score": similarity_result["rhyme_score"], | |
"string_score": similarity_result["string_score"], | |
"pattern_score": similarity_result["pattern_score"], | |
"phones": word_phones, | |
"last_vowel": word_vowel, | |
"ending": " ".join(word_end) if word_end else "", | |
"details": similarity_result["details"] | |
}) | |
# Sort by similarity score descending | |
suggestions.sort(key=lambda x: x["similarity"], reverse=True) | |
result = { | |
"target": target, | |
"target_phones": target_phones, | |
"target_last_vowel": target_vowel, | |
"target_ending": " ".join(target_end) if target_end else "", | |
"invalid_words": invalid_words, | |
"suggestions": suggestions | |
} | |
return json.dumps(result, indent=2) | |
def __init__(self, *args, **kwargs): | |
self.is_initialized = False | |