from smolagents.tools import Tool import pronouncing import difflib import json import string class ParodyWordSuggestionTool(Tool): name = "parody_word_suggester" description = """Suggests rhyming funny words using CMU dictionary pronunciations. Returns similar-sounding words that rhyme, especially focusing on common vowel sounds.""" inputs = {'target': {'type': 'string', 'description': 'The word you want to find rhyming alternatives for'}, 'word_list_str': {'type': 'string', 'description': 'JSON string of word list (e.g. \'["word1", "word2"]\')'}, 'min_similarity': {'type': 'string', 'description': 'Minimum similarity threshold (0.0-1.0)', 'nullable': True}} output_type = "string" def _are_vowels_similar(self, v1: str, v2: str) -> bool: """Check if two vowel sounds are similar enough to rhyme.""" # Strip stress markers v1 = v1.rstrip('012') v2 = v2.rstrip('012') # Define groups of similar vowel sounds similar_vowels = [ {'AH', 'UH'}, # Short u sounds {'AE', 'EH'}, # Short e/a sounds {'IY', 'IH'}, # Long/short i sounds {'AO', 'AA'}, # Open o/a sounds {'UW', 'UH'}, # Long/short oo sounds ] # Direct match if v1 == v2: return True # Check if they're in the same similarity group for group in similar_vowels: if v1 in group and v2 in group: return True return False def _contains_vowel(self, phone: str, vowels: list) -> bool: """Helper function to check if a phone contains any vowel from the list.""" for v in vowels: if v in phone: return True return False def forward(self, target: str, word_list_str: str, min_similarity: str = "0.5") -> str: """Get rhyming word suggestions.""" import pronouncing import string import json from difflib import SequenceMatcher VOWEL_LETTERS = ['A', 'E', 'I', 'O', 'U'] target = target.lower().strip(string.punctuation) min_similarity = float(min_similarity) suggestions = [] # Parse JSON string to list try: words = json.loads(word_list_str) except json.JSONDecodeError: return json.dumps({ "error": "Invalid JSON string for word_list_str", "suggestions": [] }, indent=2) # Get target pronunciation target_phones = pronouncing.phones_for_word(target) if not target_phones: return json.dumps({ "error": f"'{target}' not found in CMU dictionary", "suggestions": [] }, indent=2) target_phones = target_phones[0] target_phone_list = target_phones.split() # Find the last vowel in target target_last_vowel = None target_last_vowel_idx = -1 for i, phone in enumerate(target_phone_list): if self._contains_vowel(phone, VOWEL_LETTERS): target_last_vowel = phone target_last_vowel_idx = i # Check each word for word in words: word = word.lower().strip(string.punctuation) phones = pronouncing.phones_for_word(word) if phones: word_phones = phones[0] word_phone_list = word_phones.split() # Find last vowel in word word_last_vowel = None word_last_vowel_idx = -1 for i, phone in enumerate(word_phone_list): if self._contains_vowel(phone, VOWEL_LETTERS): word_last_vowel = phone word_last_vowel_idx = i # 1. Rhyme score (most important - 60%) rhyme_score = 0 if word_last_vowel and target_last_vowel: # Check if the vowels are similar if self._are_vowels_similar(word_last_vowel, target_last_vowel): # Check if the endings after the vowel match if (word_phone_list[word_last_vowel_idx:] == target_phone_list[target_last_vowel_idx:]): rhyme_score = 1.0 # Partial match for similar endings elif (len(word_phone_list) > word_last_vowel_idx + 1 and len(target_phone_list) > target_last_vowel_idx + 1 and word_phone_list[-1] == target_phone_list[-1]): rhyme_score = 0.8 # 2. Syllable match (25%) target_syl = pronouncing.syllable_count(target_phones) word_syl = pronouncing.syllable_count(word_phones) syllable_score = 1.0 if target_syl == word_syl else 0.0 # 3. Overall similarity (15%) string_similarity = SequenceMatcher(None, target, word).ratio() # Combined score similarity = (rhyme_score * 0.6) + (syllable_score * 0.25) + (string_similarity * 0.15) if similarity >= min_similarity: suggestions.append({ "word": word, "similarity": round(similarity, 3), "rhyme_match": rhyme_score > 0, "rhyme_score": round(rhyme_score, 3), "syllable_match": syllable_score == 1.0, "string_similarity": round(string_similarity, 3), "syllables": word_syl, "phones": word_phones }) # Sort by similarity score descending suggestions.sort(key=lambda x: x["similarity"], reverse=True) result = { "target": target, "target_syllables": pronouncing.syllable_count(target_phones), "target_phones": target_phones, "suggestions": suggestions } return json.dumps(result, indent=2) def __init__(self, *args, **kwargs): self.is_initialized = False