Spaces:
Configuration error
Configuration error
Upload tool
Browse files
tool.py
CHANGED
@@ -1,38 +1,191 @@
|
|
1 |
from smolagents.tools import Tool
|
|
|
2 |
import pronouncing
|
3 |
import string
|
4 |
-
import
|
5 |
|
6 |
class WordPhoneTool(Tool):
|
7 |
name = "word_phonetic_analyzer"
|
8 |
-
description = "Analyzes
|
9 |
-
|
|
|
10 |
output_type = "string"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
import pronouncing
|
14 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
import json
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
if not phones:
|
21 |
result = {
|
22 |
-
'word':
|
23 |
'found': False,
|
24 |
'error': 'Word not found in dictionary'
|
25 |
}
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return json.dumps(result, indent=2)
|
37 |
|
38 |
|
|
|
1 |
from smolagents.tools import Tool
|
2 |
+
import json
|
3 |
import pronouncing
|
4 |
import string
|
5 |
+
import difflib
|
6 |
|
7 |
class WordPhoneTool(Tool):
|
8 |
name = "word_phonetic_analyzer"
|
9 |
+
description = """Analyzes word pronunciation using CMU dictionary to get phonemes, syllables, and stress patterns.
|
10 |
+
Can also compare two words for phonetic similarity."""
|
11 |
+
inputs = {'word': {'type': 'string', 'description': 'Primary word to analyze for pronunciation patterns'}, 'compare_to': {'type': 'string', 'description': 'Optional word to compare against for similarity scoring', 'nullable': True}}
|
12 |
output_type = "string"
|
13 |
+
VOWEL_REF = "AH,UH,AX|AE,EH|IY,IH|AO,AA|UW,UH|AY,EY|OW,AO|AW,AO|OY,OW|ER,AXR"
|
14 |
+
|
15 |
+
def _get_vowel_groups(self):
|
16 |
+
groups = []
|
17 |
+
group_strs = self.VOWEL_REF.split("|")
|
18 |
+
for group_str in group_strs:
|
19 |
+
groups.append(group_str.split(","))
|
20 |
+
return groups
|
21 |
+
|
22 |
+
|
23 |
+
def _get_last_syllable(self, phones):
|
24 |
+
last_vowel_idx = -1
|
25 |
+
last_vowel = None
|
26 |
+
vowel_groups = self._get_vowel_groups()
|
27 |
+
|
28 |
+
for i in range(len(phones)):
|
29 |
+
phone = phones[i]
|
30 |
+
base_phone = ""
|
31 |
+
for j in range(len(phone)):
|
32 |
+
if phone[j] not in "012":
|
33 |
+
base_phone += phone[j]
|
34 |
+
|
35 |
+
for group in vowel_groups:
|
36 |
+
if base_phone in group:
|
37 |
+
last_vowel_idx = i
|
38 |
+
last_vowel = base_phone
|
39 |
+
break
|
40 |
+
|
41 |
+
if last_vowel_idx == -1:
|
42 |
+
return None, []
|
43 |
+
|
44 |
+
remaining = []
|
45 |
+
for i in range(last_vowel_idx + 1, len(phones)):
|
46 |
+
remaining.append(phones[i])
|
47 |
+
|
48 |
+
return last_vowel, remaining
|
49 |
|
50 |
+
|
51 |
+
def _strip_stress(self, phones):
|
52 |
+
result = []
|
53 |
+
for phone in phones:
|
54 |
+
stripped = ""
|
55 |
+
for char in phone:
|
56 |
+
if char not in "012":
|
57 |
+
stripped += char
|
58 |
+
result.append(stripped)
|
59 |
+
return result
|
60 |
+
|
61 |
+
|
62 |
+
def _vowels_match(self, v1, v2):
|
63 |
+
v1_stripped = ""
|
64 |
+
v2_stripped = ""
|
65 |
+
|
66 |
+
for char in v1:
|
67 |
+
if char not in "012":
|
68 |
+
v1_stripped += char
|
69 |
+
|
70 |
+
for char in v2:
|
71 |
+
if char not in "012":
|
72 |
+
v2_stripped += char
|
73 |
+
|
74 |
+
if v1_stripped == v2_stripped:
|
75 |
+
return True
|
76 |
+
|
77 |
+
vowel_groups = self._get_vowel_groups()
|
78 |
+
for group in vowel_groups:
|
79 |
+
if v1_stripped in group and v2_stripped in group:
|
80 |
+
return True
|
81 |
+
return False
|
82 |
+
|
83 |
+
|
84 |
+
def _calculate_similarity(self, word1, phones1, word2, phones2):
|
85 |
import pronouncing
|
86 |
+
from difflib import SequenceMatcher
|
87 |
+
|
88 |
+
phone_list1 = phones1.split()
|
89 |
+
phone_list2 = phones2.split()
|
90 |
+
|
91 |
+
result1 = self._get_last_syllable(phone_list1)
|
92 |
+
result2 = self._get_last_syllable(phone_list2)
|
93 |
+
|
94 |
+
last_vowel1 = result1[0]
|
95 |
+
word1_end = result1[1]
|
96 |
+
last_vowel2 = result2[0]
|
97 |
+
word2_end = result2[1]
|
98 |
+
|
99 |
+
rhyme_score = 0.0
|
100 |
+
syllable_score = 0.0
|
101 |
+
string_similarity = 0.0
|
102 |
+
|
103 |
+
if last_vowel1 and last_vowel2:
|
104 |
+
if self._vowels_match(last_vowel1, last_vowel2):
|
105 |
+
word1_end_clean = self._strip_stress(word1_end)
|
106 |
+
word2_end_clean = self._strip_stress(word2_end)
|
107 |
+
|
108 |
+
if word1_end_clean == word2_end_clean:
|
109 |
+
rhyme_score = 1.0
|
110 |
+
if len(word1) == len(word2):
|
111 |
+
if word1[1:] == word2[1:]:
|
112 |
+
rhyme_score = 1.2
|
113 |
+
else:
|
114 |
+
rhyme_score = 0.6
|
115 |
+
|
116 |
+
syl1 = pronouncing.syllable_count(phones1)
|
117 |
+
syl2 = pronouncing.syllable_count(phones2)
|
118 |
+
if syl1 == syl2:
|
119 |
+
syllable_score = 1.0
|
120 |
+
|
121 |
+
matcher = SequenceMatcher(None)
|
122 |
+
if len(word1) > 1 and len(word2) > 1:
|
123 |
+
matcher.set_seqs(word1[1:], word2[1:])
|
124 |
+
string_similarity = matcher.ratio()
|
125 |
+
else:
|
126 |
+
matcher.set_seqs(word1, word2)
|
127 |
+
string_similarity = matcher.ratio()
|
128 |
+
|
129 |
+
total_similarity = (rhyme_score * 0.6) + (syllable_score * 0.25) + (string_similarity * 0.15)
|
130 |
+
|
131 |
+
return {
|
132 |
+
"similarity": round(total_similarity, 3),
|
133 |
+
"rhyme_score": round(rhyme_score, 3),
|
134 |
+
"syllable_match": syllable_score == 1.0,
|
135 |
+
"string_similarity": round(string_similarity, 3)
|
136 |
+
}
|
137 |
+
|
138 |
+
|
139 |
+
def forward(self, word, compare_to=None):
|
140 |
import json
|
141 |
+
import string
|
142 |
+
import pronouncing
|
143 |
|
144 |
+
word_clean = word.lower()
|
145 |
+
word_clean = word_clean.strip(string.punctuation)
|
146 |
+
phones = pronouncing.phones_for_word(word_clean)
|
147 |
|
148 |
if not phones:
|
149 |
result = {
|
150 |
+
'word': word_clean,
|
151 |
'found': False,
|
152 |
'error': 'Word not found in dictionary'
|
153 |
}
|
154 |
+
return json.dumps(result, indent=2)
|
155 |
+
|
156 |
+
primary_phones = phones[0]
|
157 |
+
result = {
|
158 |
+
'word': word_clean,
|
159 |
+
'found': True,
|
160 |
+
'syllable_count': pronouncing.syllable_count(primary_phones),
|
161 |
+
'phones': primary_phones.split(),
|
162 |
+
'stresses': pronouncing.stresses(primary_phones)
|
163 |
+
}
|
164 |
+
|
165 |
+
if compare_to:
|
166 |
+
compare_clean = compare_to.lower()
|
167 |
+
compare_clean = compare_clean.strip(string.punctuation)
|
168 |
+
compare_phones = pronouncing.phones_for_word(compare_clean)
|
169 |
|
170 |
+
if not compare_phones:
|
171 |
+
result['comparison'] = {
|
172 |
+
'error': f'Comparison word "{compare_clean}" not found in dictionary'
|
173 |
+
}
|
174 |
+
else:
|
175 |
+
compare_primary = compare_phones[0]
|
176 |
+
result['comparison'] = {
|
177 |
+
'word': compare_clean,
|
178 |
+
'syllable_count': pronouncing.syllable_count(compare_primary),
|
179 |
+
'phones': compare_primary.split(),
|
180 |
+
'stresses': pronouncing.stresses(compare_primary)
|
181 |
+
}
|
182 |
+
|
183 |
+
similarity_result = self._calculate_similarity(
|
184 |
+
word_clean, primary_phones,
|
185 |
+
compare_clean, compare_primary
|
186 |
+
)
|
187 |
+
result['similarity'] = similarity_result
|
188 |
+
|
189 |
return json.dumps(result, indent=2)
|
190 |
|
191 |
|