Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import VisionEncoderDecoderModel, TrOCRProcessor,AutoTokenizer,ViTFeatureExtractor | |
from PIL import Image | |
import torch | |
def preprocess_image(image): | |
# Resize while maintaining aspect ratio | |
target_size = (224, 224) | |
original_size = image.size | |
# Calculate the new size while maintaining aspect ratio | |
aspect_ratio = original_size[0] / original_size[1] | |
if aspect_ratio > 1: # Width is greater than height | |
new_width = target_size[0] | |
new_height = int(target_size[0] / aspect_ratio) | |
else: # Height is greater than width | |
new_height = target_size[1] | |
new_width = int(target_size[1] * aspect_ratio) | |
# Resize the image | |
resized_img = image.resize((new_width, new_height)) | |
# Calculate padding values | |
padding_width = target_size[0] - new_width | |
padding_height = target_size[1] - new_height | |
# Apply padding to center the resized image | |
pad_left = padding_width // 2 | |
pad_top = padding_height // 2 | |
pad_image = Image.new('RGB', target_size, (255, 255, 255)) # White background | |
pad_image.paste(resized_img, (pad_left, pad_top)) | |
return pad_image | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModel,ViTFeatureExtractor,TrOCRProcessor,VisionEncoderDecoderModel | |
tokenizer = AutoTokenizer.from_pretrained("aayushpuri01/TrOCR-Devanagari") | |
model1 = VisionEncoderDecoderModel.from_pretrained("aayushpuri01/TrOCR-Devanagari") | |
feature_extractor1 = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') | |
processor1 = TrOCRProcessor(feature_extractor=feature_extractor1, tokenizer=tokenizer) | |
# tokenizer = AutoTokenizer.from_pretrained("paudelanil/trocr-devanagari") | |
# model = VisionEncoderDecoderModel.from_pretrained("paudelanil/trocr-devanagari") | |
# feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model1.to(device) | |
def predict(image): | |
# Preprocess the image | |
image = Image.open(image).convert("RGB") | |
image = preprocess_image(image) | |
pixel_values = processor1(image, return_tensors="pt").pixel_values.to(device) | |
# Generate text from the image | |
generated_ids = model1.generate(pixel_values) | |
generated_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="filepath"), | |
outputs="text", | |
title="Devanagari OCR with TrOCR", | |
description="Upload an image with Devanagari script and get the text prediction using a pre-trained Vision-Text model." | |
) | |
# Launch the interface | |
interface.launch(share=True) |