Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import VisionEncoderDecoderModel, TrOCRProcessor
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
# Load the model and processor from Hugging Face
|
6 |
+
model = VisionEncoderDecoderModel.from_pretrained("paudelanil/devnagari-TrOCR")
|
7 |
+
processor = TrOCRProcessor.from_pretrained("paudelanil/devnagari-TrOCR")
|
8 |
+
|
9 |
+
def predict(image):
|
10 |
+
# Preprocess the image
|
11 |
+
image = Image.open(image).convert("RGB")
|
12 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
13 |
+
|
14 |
+
# Generate text from the image
|
15 |
+
generated_ids = model.generate(pixel_values)
|
16 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
17 |
+
|
18 |
+
return generated_text
|
19 |
+
|
20 |
+
# Create the Gradio interface
|
21 |
+
interface = gr.Interface(
|
22 |
+
fn=predict,
|
23 |
+
inputs=gr.Image(type="filepath"),
|
24 |
+
outputs="text",
|
25 |
+
title="Devanagari OCR with TrOCR",
|
26 |
+
description="Upload an image with Devanagari script and get the text prediction using a pre-trained Vision-Text model."
|
27 |
+
)
|
28 |
+
|
29 |
+
# Launch the interface
|
30 |
+
interface.launch()
|