Spaces:
Running
Running
change app.py
Browse files
app.py
CHANGED
@@ -3,13 +3,46 @@ from transformers import VisionEncoderDecoderModel, TrOCRProcessor
|
|
3 |
from PIL import Image
|
4 |
|
5 |
# Load the model and processor from Hugging Face
|
6 |
-
model = VisionEncoderDecoderModel.from_pretrained("paudelanil/
|
7 |
-
processor = TrOCRProcessor.from_pretrained("paudelanil/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def predict(image):
|
10 |
# Preprocess the image
|
11 |
image = Image.open(image).convert("RGB")
|
12 |
-
|
|
|
13 |
|
14 |
# Generate text from the image
|
15 |
generated_ids = model.generate(pixel_values)
|
@@ -27,4 +60,4 @@ interface = gr.Interface(
|
|
27 |
)
|
28 |
|
29 |
# Launch the interface
|
30 |
-
interface.launch()
|
|
|
3 |
from PIL import Image
|
4 |
|
5 |
# Load the model and processor from Hugging Face
|
6 |
+
model = VisionEncoderDecoderModel.from_pretrained("paudelanil/trocr-devanagari")
|
7 |
+
processor = TrOCRProcessor.from_pretrained("paudelanil/trocr-devanagari")
|
8 |
+
|
9 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
+
model.to(device)
|
11 |
+
def preprocess_image(image):
|
12 |
+
# Resize while maintaining aspect ratio
|
13 |
+
target_size = (224, 224)
|
14 |
+
original_size = image.size
|
15 |
+
|
16 |
+
# Calculate the new size while maintaining aspect ratio
|
17 |
+
aspect_ratio = original_size[0] / original_size[1]
|
18 |
+
if aspect_ratio > 1: # Width is greater than height
|
19 |
+
new_width = target_size[0]
|
20 |
+
new_height = int(target_size[0] / aspect_ratio)
|
21 |
+
else: # Height is greater than width
|
22 |
+
new_height = target_size[1]
|
23 |
+
new_width = int(target_size[1] * aspect_ratio)
|
24 |
+
|
25 |
+
# Resize the image
|
26 |
+
resized_img = image.resize((new_width, new_height))
|
27 |
+
|
28 |
+
# Calculate padding values
|
29 |
+
padding_width = target_size[0] - new_width
|
30 |
+
padding_height = target_size[1] - new_height
|
31 |
+
|
32 |
+
# Apply padding to center the resized image
|
33 |
+
pad_left = padding_width // 2
|
34 |
+
pad_top = padding_height // 2
|
35 |
+
pad_image = Image.new('RGB', target_size, (255, 255, 255)) # White background
|
36 |
+
pad_image.paste(resized_img, (pad_left, pad_top))
|
37 |
+
|
38 |
+
return pad_image
|
39 |
+
|
40 |
|
41 |
def predict(image):
|
42 |
# Preprocess the image
|
43 |
image = Image.open(image).convert("RGB")
|
44 |
+
image = preprocess_image(image)
|
45 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values.to(device)
|
46 |
|
47 |
# Generate text from the image
|
48 |
generated_ids = model.generate(pixel_values)
|
|
|
60 |
)
|
61 |
|
62 |
# Launch the interface
|
63 |
+
interface.launch(share=True)
|