Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,22 +3,60 @@ from transformers import VisionEncoderDecoderModel, TrOCRProcessor,AutoTokenizer
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
tokenizer = AutoTokenizer.from_pretrained("paudelanil/trocr-devanagari")
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
11 |
|
12 |
-
|
13 |
def predict(image):
|
14 |
# Preprocess the image
|
15 |
image = Image.open(image).convert("RGB")
|
16 |
image = preprocess_image(image)
|
17 |
-
pixel_values =
|
18 |
|
19 |
# Generate text from the image
|
20 |
-
generated_ids =
|
21 |
-
generated_text =
|
22 |
|
23 |
return generated_text
|
24 |
|
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
|
6 |
+
def preprocess_image(image):
|
7 |
+
# Resize while maintaining aspect ratio
|
8 |
+
target_size = (224, 224)
|
9 |
+
original_size = image.size
|
10 |
+
|
11 |
+
# Calculate the new size while maintaining aspect ratio
|
12 |
+
aspect_ratio = original_size[0] / original_size[1]
|
13 |
+
if aspect_ratio > 1: # Width is greater than height
|
14 |
+
new_width = target_size[0]
|
15 |
+
new_height = int(target_size[0] / aspect_ratio)
|
16 |
+
else: # Height is greater than width
|
17 |
+
new_height = target_size[1]
|
18 |
+
new_width = int(target_size[1] * aspect_ratio)
|
19 |
+
|
20 |
+
# Resize the image
|
21 |
+
resized_img = image.resize((new_width, new_height))
|
22 |
+
|
23 |
+
# Calculate padding values
|
24 |
+
padding_width = target_size[0] - new_width
|
25 |
+
padding_height = target_size[1] - new_height
|
26 |
+
|
27 |
+
# Apply padding to center the resized image
|
28 |
+
pad_left = padding_width // 2
|
29 |
+
pad_top = padding_height // 2
|
30 |
+
pad_image = Image.new('RGB', target_size, (255, 255, 255)) # White background
|
31 |
+
pad_image.paste(resized_img, (pad_left, pad_top))
|
32 |
+
return pad_image
|
33 |
+
|
34 |
+
|
35 |
+
# Load model directly
|
36 |
+
from transformers import AutoTokenizer, AutoModel,ViTFeatureExtractor,TrOCRProcessor,VisionEncoderDecoderModel
|
37 |
|
38 |
tokenizer = AutoTokenizer.from_pretrained("paudelanil/trocr-devanagari")
|
39 |
+
model1 = VisionEncoderDecoderModel.from_pretrained("paudelanil/trocr-devanagari")
|
40 |
+
feature_extractor1 = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
41 |
+
|
42 |
+
processor1 = TrOCRProcessor(feature_extractor=feature_extractor1, tokenizer=tokenizer)
|
43 |
+
|
44 |
+
|
45 |
+
# tokenizer = AutoTokenizer.from_pretrained("paudelanil/trocr-devanagari")
|
46 |
+
# model = VisionEncoderDecoderModel.from_pretrained("paudelanil/trocr-devanagari")
|
47 |
+
# feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
48 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
49 |
|
50 |
+
model1.to(device)
|
51 |
def predict(image):
|
52 |
# Preprocess the image
|
53 |
image = Image.open(image).convert("RGB")
|
54 |
image = preprocess_image(image)
|
55 |
+
pixel_values = processor1(image, return_tensors="pt").pixel_values.to(device)
|
56 |
|
57 |
# Generate text from the image
|
58 |
+
generated_ids = model1.generate(pixel_values)
|
59 |
+
generated_text = processor1.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
60 |
|
61 |
return generated_text
|
62 |
|