Spaces:
Sleeping
Sleeping
from faster_whisper import WhisperModel | |
import pandas as pd | |
import gradio as gr | |
import psutil | |
model = WhisperModel(whisper_model, device="cpu", compute_type="int8") | |
def speech_to_text_translate(mic=None, file=None, lang=None): | |
if mic is not None: | |
audio = mic | |
elif file is not None: | |
audio = file | |
else: | |
raise gr.Error("You must either provide a mic recording or a file") | |
if lang is None: | |
raise gr.Error("Select a transcribe language") | |
time_start = time.time() | |
segments, info = model.transcribe(audio, task='translate', beam_size=5) | |
print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) | |
# Decode audio to Text | |
objects = [s._asdict() for s in segments] | |
time_end = time.time() | |
time_diff = time_end - time_start | |
memory = psutil.virtual_memory() | |
system_info = f""" | |
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* | |
*Processing time: {time_diff:.5} seconds.* | |
""" | |
df_results = pd.DataFrame(objects) | |
df_results = df_results.drop(columns=['seek', 'tokens', 'avg_logprob']) | |
return df_results, system_info | |
theme=gr.themes.Default().set( | |
color_accent="#e20074", | |
# Buttons | |
button_primary_text_color='white', | |
button_primary_text_color_hover='black', | |
button_primary_background_fill="#e20074", | |
button_primary_background_fill_hover='#c00063', # --telekom-color-primary-hovered | |
button_primary_border_color="#e20074", | |
button_primary_border_color_hover="#c00063", | |
stat_background_fill="#e20074", | |
# Dark Mode | |
button_primary_background_fill_dark="#e20074", | |
button_primary_background_fill_hover_dark='#c00063', # --telekom-color-primary-hovered | |
button_primary_border_color_dark="#e20074", | |
button_primary_border_color_hover_dark="#c00063", | |
stat_background_fill_dark="#e20074", | |
) | |
with gr.Blocks(title='Whisper Demo', theme=theme) as demo: | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Simple Whisper Demo</h1> | |
A simple Whisper demo using local CPU Inference of the largest-v2 Model | |
</div> | |
''') | |
audio_in = gr.Audio(label="Record", source='microphone', type="filepath") | |
file_in = gr.Audio(label="Upload", source='upload', type="filepath") | |
drop_down = gr.Dropdown(["de", "en", "es", "fr", "ru"], value="en") | |
transcribe_btn = gr.Button("Transcribe audio", variant="primary") | |
translate_btn = gr.Button("Translate audio") | |
trans_df = gr.DataFrame(label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate') | |
sys_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*") | |
transcribe_btn.click(speech_to_text_simple, | |
[audio_in, file_in], | |
[trans_df, sys_info] | |
) | |
translate_btn.click(speech_to_text_translate, | |
[audio_in, file_in, drop_down], | |
[trans_df, sys_info] | |