File size: 10,361 Bytes
84eee5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use 
# under the terms of the LICENSE.md file.
#
# For inquiries contact  [email protected]
#

import os
import sys
from PIL import Image
from typing import NamedTuple
from .colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \
    read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text
from .utils.graphics_utils import getWorld2View2, focal2fov, fov2focal
import numpy as np
import json
from pathlib import Path
from plyfile import PlyData, PlyElement
from .utils.sh_utils import SH2RGB
from .gaussian_model import BasicPointCloud

class CameraInfo(NamedTuple):
    uid: int
    R: np.array
    T: np.array
    FovY: np.array
    FovX: np.array
    image: np.array
    image_path: str
    image_name: str
    mask: np.array
    mask_path: str
    width: int
    height: int

class SceneInfo(NamedTuple):
    point_cloud: BasicPointCloud
    train_cameras: list
    test_cameras: list
    nerf_normalization: dict
    ply_path: str

def getNerfppNorm(cam_info):
    def get_center_and_diag(cam_centers):
        cam_centers = np.hstack(cam_centers)
        avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
        center = avg_cam_center
        dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
        diagonal = np.max(dist)
        return center.flatten(), diagonal

    cam_centers = []

    for cam in cam_info:
        W2C = getWorld2View2(cam.R, cam.T)
        C2W = np.linalg.inv(W2C)
        cam_centers.append(C2W[:3, 3:4])

    center, diagonal = get_center_and_diag(cam_centers)
    radius = diagonal * 1.1

    translate = -center

    return {"translate": translate, "radius": radius}

def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder, masks_folder):
    cam_infos = []
    for idx, key in enumerate(cam_extrinsics):
        sys.stdout.write('\r')
        # the exact output you're looking for:
        sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics)))
        sys.stdout.flush()

        extr = cam_extrinsics[key]
        intr = cam_intrinsics[extr.camera_id]
        height = intr.height
        width = intr.width

        uid = intr.id
        R = np.transpose(qvec2rotmat(extr.qvec))
        T = np.array(extr.tvec)

        if intr.model=="SIMPLE_PINHOLE":
            focal_length_x = intr.params[0]
            FovY = focal2fov(focal_length_x, height)
            FovX = focal2fov(focal_length_x, width)
        elif intr.model=="PINHOLE":
            focal_length_x = intr.params[0]
            focal_length_y = intr.params[1]
            FovY = focal2fov(focal_length_y, height)
            FovX = focal2fov(focal_length_x, width)
        else:
            assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"

        image_path = os.path.join(images_folder, os.path.basename(extr.name))
        image_name = os.path.basename(image_path).split(".")[0]
        image = Image.open(image_path)

        mask_path = os.path.join(masks_folder, os.path.basename(extr.name).replace(".jpg", ".png"))
        try:
            mask = Image.open(mask_path)
        except:
            mask = None

        cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image, mask=mask, mask_path=mask_path,
                              image_path=image_path, image_name=image_name, width=width, height=height)
        cam_infos.append(cam_info)
    sys.stdout.write('\n')
    return cam_infos

def fetchPly(path):
    plydata = PlyData.read(path)
    vertices = plydata['vertex']
    positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T
    colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0
    normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T
    return BasicPointCloud(points=positions, colors=colors, normals=normals)

def storePly(path, xyz, rgb):
    # Define the dtype for the structured array
    dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
            ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
            ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
    
    normals = np.zeros_like(xyz)

    elements = np.empty(xyz.shape[0], dtype=dtype)
    attributes = np.concatenate((xyz, normals, rgb), axis=1)
    elements[:] = list(map(tuple, attributes))

    # Create the PlyData object and write to file
    vertex_element = PlyElement.describe(elements, 'vertex')
    ply_data = PlyData([vertex_element])
    ply_data.write(path)

def readColmapSceneInfo(path, images, eval, llffhold=8):
    try:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
        cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
    except:
        cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
        cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
        cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
        cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)

    reading_dir = "images" if images == None else images
    # FIXME in post
    mask_reading_dir = "masks"# if images == None else images
    cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir), masks_folder=os.path.join(path, mask_reading_dir))
    cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name)

    if eval:
        train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0]
        test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0]
    else:
        train_cam_infos = cam_infos
        test_cam_infos = []

    nerf_normalization = getNerfppNorm(train_cam_infos)

    ply_path = os.path.join(path, "sparse/0/points3D.ply")
    bin_path = os.path.join(path, "sparse/0/points3D.bin")
    txt_path = os.path.join(path, "sparse/0/points3D.txt")
    if not os.path.exists(ply_path):
        print("Converting point3d.bin to .ply, will happen only the first time you open the scene.")
        try:
            xyz, rgb, _ = read_points3D_binary(bin_path)
        except:
            xyz, rgb, _ = read_points3D_text(txt_path)
        storePly(ply_path, xyz, rgb)
    try:
        pcd = fetchPly(ply_path)
    except:
        pcd = None

    scene_info = SceneInfo(point_cloud=pcd,
                           train_cameras=train_cam_infos,
                           test_cameras=test_cam_infos,
                           nerf_normalization=nerf_normalization,
                           ply_path=ply_path)
    return scene_info

def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"):
    cam_infos = []

    with open(os.path.join(path, transformsfile)) as json_file:
        contents = json.load(json_file)
        fovx = contents["camera_angle_x"]

        frames = contents["frames"]
        for idx, frame in enumerate(frames):
            cam_name = os.path.join(path, frame["file_path"] + extension)

            # NeRF 'transform_matrix' is a camera-to-world transform
            c2w = np.array(frame["transform_matrix"])
            # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
            c2w[:3, 1:3] *= -1

            # get the world-to-camera transform and set R, T
            w2c = np.linalg.inv(c2w)
            R = np.transpose(w2c[:3,:3])  # R is stored transposed due to 'glm' in CUDA code
            T = w2c[:3, 3]

            image_path = os.path.join(path, cam_name)
            image_name = Path(cam_name).stem
            image = Image.open(image_path)

            im_data = np.array(image.convert("RGBA"))

            bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])

            norm_data = im_data / 255.0
            arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
            image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")

            fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
            FovY = fovy 
            FovX = fovx

            cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
                            image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1]))
            
    return cam_infos

def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
    print("Reading Training Transforms")
    train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension)
    print("Reading Test Transforms")
    test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension)
    
    if not eval:
        train_cam_infos.extend(test_cam_infos)
        test_cam_infos = []

    nerf_normalization = getNerfppNorm(train_cam_infos)

    ply_path = os.path.join(path, "points3d.ply")
    if not os.path.exists(ply_path):
        # Since this data set has no colmap data, we start with random points
        num_pts = 100_000
        print(f"Generating random point cloud ({num_pts})...")
        
        # We create random points inside the bounds of the synthetic Blender scenes
        xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
        shs = np.random.random((num_pts, 3)) / 255.0
        pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))

        storePly(ply_path, xyz, SH2RGB(shs) * 255)
    try:
        pcd = fetchPly(ply_path)
    except:
        pcd = None

    scene_info = SceneInfo(point_cloud=pcd,
                           train_cameras=train_cam_infos,
                           test_cameras=test_cam_infos,
                           nerf_normalization=nerf_normalization,
                           ply_path=ply_path)
    return scene_info

sceneLoadTypeCallbacks = {
    "Colmap": readColmapSceneInfo,
    "Blender" : readNerfSyntheticInfo
}