# MIT License # Copyright (c) 2022 Intelligent Systems Lab Org # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # File author: Shariq Farooq Bhat # This file is partly inspired from BTS (https://github.com/cleinc/bts/blob/master/pytorch/bts_dataloader.py); author: Jin Han Lee import itertools import os import random from random import choice import numpy as np import cv2 import torch import torch.nn as nn import torch.utils.data.distributed from zoedepth.utils.easydict import EasyDict as edict from PIL import Image, ImageOps from torch.utils.data import DataLoader, Dataset from torchvision import transforms from zoedepth.utils.config import change_dataset from .ddad import get_ddad_loader from .diml_indoor_test import get_diml_indoor_loader from .diml_outdoor_test import get_diml_outdoor_loader from .diode import get_diode_loader from .hypersim import get_hypersim_loader from .ibims import get_ibims_loader from .sun_rgbd_loader import get_sunrgbd_loader from .vkitti import get_vkitti_loader from .vkitti2 import get_vkitti2_loader from .places365 import get_places365_loader, Places365 from .marigold_nyu import get_marigold_nyu_loader, MarigoldNYU from .preprocess import CropParams, get_white_border, get_black_border def _is_pil_image(img): return isinstance(img, Image.Image) def _is_numpy_image(img): return isinstance(img, np.ndarray) and (img.ndim in {2, 3}) def preprocessing_transforms(mode, **kwargs): return transforms.Compose([ ToTensor(mode=mode, **kwargs) ]) class DepthDataLoader(object): def __init__(self, config, mode, device='cpu', transform=None, **kwargs): """ Data loader for depth datasets Args: config (dict): Config dictionary. Refer to utils/config.py mode (str): "train" or "online_eval" device (str, optional): Device to load the data on. Defaults to 'cpu'. transform (torchvision.transforms, optional): Transform to apply to the data. Defaults to None. """ self.config = config if config.dataset == 'ibims': self.data = get_ibims_loader(config, batch_size=1, num_workers=1) return if config.dataset == 'sunrgbd': self.data = get_sunrgbd_loader( data_dir_root=config.sunrgbd_root, batch_size=1, num_workers=1) return if config.dataset == 'diml_indoor': self.data = get_diml_indoor_loader( data_dir_root=config.diml_indoor_root, batch_size=1, num_workers=1) return if config.dataset == 'diml_outdoor': self.data = get_diml_outdoor_loader( data_dir_root=config.diml_outdoor_root, batch_size=1, num_workers=1) return if "diode" in config.dataset: self.data = get_diode_loader( config[config.dataset+"_root"], batch_size=1, num_workers=1) return if config.dataset == 'hypersim_test': self.data = get_hypersim_loader( config.hypersim_test_root, batch_size=1, num_workers=1) return if config.dataset == 'vkitti': self.data = get_vkitti_loader( config.vkitti_root, batch_size=1, num_workers=1) return if config.dataset == 'vkitti2': self.data = get_vkitti2_loader( config.vkitti2_root, batch_size=1, num_workers=1) return if config.dataset == 'ddad': self.data = get_ddad_loader(config.ddad_root, resize_shape=( 352, 1216), batch_size=1, num_workers=1) return img_size = self.config.get("img_size", None) img_size = img_size if self.config.get( "do_input_resize", False) else None if transform is None: transform = preprocessing_transforms(mode, size=img_size) if mode == 'train': Dataset = DataLoadPreprocess self.training_samples = Dataset( config, mode, transform=transform, device=device) if config.distributed and not config.debug_mode: self.train_sampler = torch.utils.data.distributed.DistributedSampler( self.training_samples) else: self.train_sampler = None if not config.debug_mode: self.data = DataLoader(self.training_samples, batch_size=config.batch_size, shuffle=(self.train_sampler is None), num_workers=config.workers, pin_memory=True, persistent_workers=True, # prefetch_factor=2, sampler=self.train_sampler) else: self.data = DataLoader(self.training_samples, batch_size=config.batch_size, shuffle=(self.train_sampler is None), num_workers=0, pin_memory=True, # prefetch_factor=2, sampler=self.train_sampler) elif mode == 'online_eval': self.testing_samples = DataLoadPreprocess( config, mode, transform=transform) if config.distributed: # redundant. here only for readability and to be more explicit # Give whole test set to all processes (and report evaluation only on one) regardless self.eval_sampler = None else: self.eval_sampler = None self.data = DataLoader(self.testing_samples, 1, shuffle=kwargs.get("shuffle_test", False), num_workers=1, pin_memory=False, sampler=self.eval_sampler) elif mode == 'test': self.testing_samples = DataLoadPreprocess( config, mode, transform=transform) self.data = DataLoader(self.testing_samples, 1, shuffle=False, num_workers=1) else: print( 'mode should be one of \'train, test, online_eval\'. Got {}'.format(mode)) def repetitive_roundrobin(*iterables): """ cycles through iterables but sample wise first yield first sample from first iterable then first sample from second iterable and so on then second sample from first iterable then second sample from second iterable and so on If one iterable is shorter than the others, it is repeated until all iterables are exhausted repetitive_roundrobin('ABC', 'D', 'EF') --> A D E B D F C D E """ # Repetitive roundrobin iterables_ = [iter(it) for it in iterables] exhausted = [False] * len(iterables) while not all(exhausted): for i, it in enumerate(iterables_): try: yield next(it) except StopIteration: exhausted[i] = True iterables_[i] = itertools.cycle(iterables[i]) # First elements may get repeated if one iterable is shorter than the others yield next(iterables_[i]) class RepetitiveRoundRobinDataLoader(object): def __init__(self, *dataloaders): self.dataloaders = dataloaders def __iter__(self): return repetitive_roundrobin(*self.dataloaders) def __len__(self): # First samples get repeated, thats why the plus one return len(self.dataloaders) * (max(len(dl) for dl in self.dataloaders) + 1) class MixedNYUKITTI(object): def __init__(self, config, mode, device='cpu', **kwargs): config = edict(config) config.workers = config.workers // 2 self.config = config nyu_conf = change_dataset(edict(config), 'nyu') kitti_conf = change_dataset(edict(config), 'kitti') # make nyu default for testing self.config = config = nyu_conf img_size = self.config.get("img_size", None) img_size = img_size if self.config.get( "do_input_resize", False) else None if mode == 'train': nyu_loader = DepthDataLoader( nyu_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data kitti_loader = DepthDataLoader( kitti_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data # It has been changed to repetitive roundrobin self.data = RepetitiveRoundRobinDataLoader( nyu_loader, kitti_loader) else: self.data = DepthDataLoader(nyu_conf, mode, device=device).data class MixedNYUPlaces365(object): def __init__(self, config, mode, device='cpu', **kwargs): config = edict(config) config.workers = config.workers // 2 self.config = config nyu_conf = change_dataset(edict(config), 'nyu') places365_conf = change_dataset(edict(config), 'places365') # make nyu default for testing self.config = config = nyu_conf img_size = self.config.get("img_size", None) img_size = img_size if self.config.get( "do_input_resize", False) else None if mode == 'train': nyu_loader = DepthDataLoader( nyu_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data places365_loader = DepthDataLoader( places365_conf, mode, device=device, transform=preprocessing_transforms(mode, size=img_size)).data # It has been changed to repetitive roundrobin self.data = RepetitiveRoundRobinDataLoader( nyu_loader, places365_loader) else: self.data = DepthDataLoader(nyu_conf, mode, device=device).data def remove_leading_slash(s): if s[0] == '/' or s[0] == '\\': return s[1:] return s class CachedReader: def __init__(self, shared_dict=None): if shared_dict: self._cache = shared_dict else: self._cache = {} def open(self, fpath): im = self._cache.get(fpath, None) if im is None: im = self._cache[fpath] = Image.open(fpath) return im class ImReader: def __init__(self): pass # @cache def open(self, fpath): return Image.open(fpath) class DataLoadPreprocess(Dataset): def __init__(self, config, mode, transform=None, is_for_online_eval=False, device="cpu", **kwargs): self.config = config if mode == 'online_eval': with open(config.filenames_file_eval, 'r') as f: self.filenames = f.readlines() else: with open(config.filenames_file, 'r') as f: self.filenames = f.readlines() self.device = torch.device(device) self.mode = mode self.transform = transform self.to_tensor = ToTensor(mode) self.is_for_online_eval = is_for_online_eval if config.use_shared_dict: self.reader = CachedReader(config.shared_dict) else: self.reader = ImReader() if config.dataset == "places365" or config.inpaint_task_probability > 0: places365_conf = change_dataset(edict(config), 'places365') self.places365_data = self.data = Places365(places365_conf.places365_root, places365_conf.places365_depth_root, places365_conf.places365_depth_masks_root, randomize_masks=places365_conf.get("randomize_masks", True), debug_mode=self.config.debug_mode) if config.dataset == "marigold_nyu": self.marigold_data = self.data = MarigoldNYU(config.nyu_dir_root, config.marigold_depth_root, debug_mode=self.config.debug_mode) self.config.avoid_boundary = True def postprocess(self, sample): return sample def __getitem__(self, idx): sample_path = self.filenames[idx] if self.config.dataset not in ('places365', "marigold_nyu") else self.filenames[0] focal = float(sample_path.split()[2]) sample = {} if self.mode == 'train': depth_mask = None if self.config.dataset == 'kitti' and self.config.use_right and random.random() > 0.5: image_path = os.path.join( self.config.data_path, remove_leading_slash(sample_path.split()[3])) depth_path = os.path.join( self.config.gt_path, remove_leading_slash(sample_path.split()[4])) image = self.reader.open(image_path) depth_gt = self.reader.open(depth_path) w, h = image.size elif self.config.dataset == 'places365': image, depth_gt, depth_mask, image_path, depth_path, _ = self.places365_data[idx] h, w = image.shape[:2] if image.ndim == 2: image = image.reshape(image.shape[0], image.shape[1], 1) image = np.repeat(image, 3, axis=-1) elif self.config.dataset == 'marigold_nyu': image, depth_gt, marigold_gt, image_path, depth_path = self.marigold_data[idx] h, w = image.shape[:2] if image.ndim == 2: image = image.reshape(image.shape[0], image.shape[1], 1) image = np.repeat(image, 3, axis=-1) else: image_path = os.path.join( self.config.data_path, remove_leading_slash(sample_path.split()[0])) depth_path = os.path.join( self.config.gt_path, remove_leading_slash(sample_path.split()[1])) image = self.reader.open(image_path) depth_gt = self.reader.open(depth_path) w, h = image.size if self.config.inpaint_task_probability > 0: _, _, depth_mask, _, _, _ = self.places365_data[idx] if self.config.do_kb_crop: height = image.height width = image.width top_margin = int(height - 352) left_margin = int((width - 1216) / 2) depth_gt = depth_gt.crop( (left_margin, top_margin, left_margin + 1216, top_margin + 352)) image = image.crop( (left_margin, top_margin, left_margin + 1216, top_margin + 352)) # Avoid blank boundaries due to pixel registration? # Train images have white border. Test images have black border. if self.config.dataset in ('nyu', 'marigold_nyu') and self.config.avoid_boundary: # print("Avoiding Blank Boundaries!") # We just crop and pad again with reflect padding to original size # original_size = image.size #crop_params = get_white_border(np.array(255*image, dtype=np.uint8)) # crop image down from 640x480 to 624x464 crop_params = CropParams(8, 472, 8, 632) image = image[crop_params.top:crop_params.bottom, crop_params.left:crop_params.right] depth_gt = depth_gt[crop_params.top:crop_params.bottom, crop_params.left:crop_params.right] # Use reflect padding to fill the blank #image = np.pad(image, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right), (0, 0)), mode='reflect') #image = Image.fromarray(image) #depth_gt = np.pad(depth_gt, ((crop_params.top, h - crop_params.bottom), (crop_params.left, w - crop_params.right), (0, 0)), 'constant', constant_values=0) #depth_gt = Image.fromarray(depth_gt) if self.config.dataset == "marigold_nyu": marigold_gt = marigold_gt[crop_params.top:crop_params.bottom, crop_params.left:crop_params.right] if self.config.do_random_rotate and (self.config.aug) and self.config.dataset not in ('places365', "marigold_nyu"): random_angle = (random.random() - 0.5) * 2 * self.config.degree image = self.rotate_image(image, random_angle) depth_gt = self.rotate_image( depth_gt, random_angle, flag=Image.NEAREST) if self.config.dataset not in ('places365', "marigold_nyu"): image = np.asarray(image, dtype=np.float32) / 255.0 depth_gt = np.asarray(depth_gt, dtype=np.float32) depth_gt = np.expand_dims(depth_gt, axis=2) if self.config.dataset in ('nyu', 'marigold_nyu'): depth_gt = depth_gt / 1000.0 elif self.config.dataset != 'places365': depth_gt = depth_gt / 256.0 if self.config.aug and (self.config.random_crop) and self.config.dataset not in ('places365', "marigold_nyu"): image, depth_gt = self.random_crop( image, depth_gt, self.config.input_height, self.config.input_width) if self.config.aug and self.config.random_translate and self.config.dataset not in ('places365', "marigold_nyu"): # print("Random Translation!") image, depth_gt = self.random_translate(image, depth_gt, self.config.max_translation) mask = np.logical_and(depth_gt > self.config.min_depth, depth_gt < self.config.max_depth).squeeze()[None, ...] is_inpainting_sample = self.config.inpaint_task_probability > 0 and (torch.rand(1).item() < self.config.inpaint_task_probability) def randomly_scale_depth(depth_to_scale): # scale the mask max_scale_factor = self.config.max_depth / depth_to_scale.max() min_scale_factor = self.config.min_depth / depth_to_scale.min() scale_factor = torch.rand(1).item() * (max_scale_factor - min_scale_factor) + min_scale_factor scaled_depth = depth_to_scale * scale_factor scaled_depth = scaled_depth.clip(self.config.min_depth, self.config.max_depth) return scaled_depth if self.config.dataset in ("marigold_nyu"): marigold_mask = (marigold_gt > -1).squeeze()[None, ...] if is_inpainting_sample and self.config.random_inpainting_scaling: marigold_gt = randomly_scale_depth(marigold_gt) marigold_gt[~marigold_mask[0]] = 0 depth_gt = marigold_gt mask = marigold_mask image, depth_gt, mask = self.train_preprocess(image, depth_gt, mask) sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'mask': mask, **sample} if self.config["depth_channel_mask_augment"]: if self.config.dataset in ("marigold_nyu",): if (not self.config.inpaint_task_probability > 0) and depth_mask is None: depth_mask = np.zeros_like(depth_gt) elif self.config.inpaint_task_probability > 0: # we randomly mask with places365, or provide no sparse input at all if is_inpainting_sample: # upsample depth_mask to match depth_gt depth_mask = torch.nn.functional.interpolate(torch.from_numpy(depth_mask).permute(2, 0, 1).unsqueeze(0), size=depth_gt.shape[:2], mode='nearest').squeeze(0).permute(1, 2, 0).numpy() else: depth_mask = np.zeros_like(depth_gt) sample["masked_depth"] = depth_gt * depth_mask else: if self.mode == 'online_eval': data_path = self.config.data_path_eval else: data_path = self.config.data_path image_path = os.path.join( data_path, remove_leading_slash(sample_path.split()[0])) image = np.asarray(self.reader.open(image_path), dtype=np.float32) / 255.0 if self.mode == 'online_eval': gt_path = self.config.gt_path_eval depth_path = os.path.join( gt_path, remove_leading_slash(sample_path.split()[1])) has_valid_depth = False try: depth_gt = self.reader.open(depth_path) has_valid_depth = True except IOError: depth_gt = False # print('Missing gt for {}'.format(image_path)) if has_valid_depth: depth_gt = np.asarray(depth_gt, dtype=np.float32) depth_gt = np.expand_dims(depth_gt, axis=2) if self.config.dataset == 'nyu': depth_gt = depth_gt / 1000.0 elif self.config.dataset != 'places365': depth_gt = depth_gt / 256.0 mask = np.logical_and( depth_gt >= self.config.min_depth, depth_gt <= self.config.max_depth).squeeze()[None, ...] else: mask = False if self.config.do_kb_crop: height = image.shape[0] width = image.shape[1] top_margin = int(height - 352) left_margin = int((width - 1216) / 2) image = image[top_margin:top_margin + 352, left_margin:left_margin + 1216, :] if self.mode == 'online_eval' and has_valid_depth: depth_gt = depth_gt[top_margin:top_margin + 352, left_margin:left_margin + 1216, :] if self.mode == 'online_eval': sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': has_valid_depth, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1], 'mask': mask} else: sample = {'image': image, 'focal': focal} if (self.mode == 'train') or ('has_valid_depth' in sample and sample['has_valid_depth']): if (self.config.dataset not in ('places365', "marigold_nyu")): mask = np.logical_and(depth_gt > self.config.min_depth, depth_gt < self.config.max_depth).squeeze()[None, ...] sample['mask'] = mask if self.transform: sample = self.transform(sample) sample = self.postprocess(sample) sample['dataset'] = self.config.dataset if self.config.dataset != 'places365': sample = {**sample, 'image_path': sample_path.split()[0], 'depth_path': sample_path.split()[1]} else: sample = {**sample, 'image_path': image_path, 'depth_path': depth_path} return sample def rotate_image(self, image, angle, flag=Image.BILINEAR): result = image.rotate(angle, resample=flag) return result def random_crop(self, img, depth, height, width): assert img.shape[0] >= height assert img.shape[1] >= width assert img.shape[0] == depth.shape[0] assert img.shape[1] == depth.shape[1] x = random.randint(0, img.shape[1] - width) y = random.randint(0, img.shape[0] - height) img = img[y:y + height, x:x + width, :] depth = depth[y:y + height, x:x + width, :] return img, depth def random_translate(self, img, depth, max_t=20): assert img.shape[0] == depth.shape[0] assert img.shape[1] == depth.shape[1] p = self.config.translate_prob do_translate = random.random() if do_translate > p: return img, depth x = random.randint(-max_t, max_t) y = random.randint(-max_t, max_t) M = np.float32([[1, 0, x], [0, 1, y]]) # print(img.shape, depth.shape) img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0])) depth = cv2.warpAffine(depth, M, (depth.shape[1], depth.shape[0])) depth = depth.squeeze()[..., None] # add channel dim back. Affine warp removes it # print("after", img.shape, depth.shape) return img, depth def train_preprocess(self, image, depth_gt, mask): if self.config.aug: # Random flipping do_flip = random.random() if do_flip > 0.5: # image is H x W x 3 image = (image[:, ::-1, :]).copy() # depth_gt is H x W x 1 depth_gt = (depth_gt[:, ::-1, :]).copy() # mask is B x H x W mask = (mask[:, :, ::-1]).copy() # Random gamma, brightness, color augmentation do_augment = random.random() if do_augment > 0.5: image = self.augment_image(image) return image, depth_gt, mask def augment_image(self, image): # gamma augmentation gamma = random.uniform(0.9, 1.1) image_aug = image ** gamma # brightness augmentation if self.config.dataset == 'nyu': brightness = random.uniform(0.75, 1.25) else: brightness = random.uniform(0.9, 1.1) image_aug = image_aug * brightness # color augmentation colors = np.random.uniform(0.9, 1.1, size=3) white = np.ones((image.shape[0], image.shape[1])) color_image = np.stack([white * colors[i] for i in range(3)], axis=2) image_aug *= color_image image_aug = np.clip(image_aug, 0, 1) return image_aug def __len__(self): return len(self.data) if (self.config.dataset in ('places365', "marigold_nyu") and self.mode != 'online_eval') else len(self.filenames) class ToTensor(object): def __init__(self, mode, do_normalize=False, size=None): self.mode = mode self.normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if do_normalize else nn.Identity() self.size = size if size is not None: self.resize = transforms.Resize(size=size) else: self.resize = nn.Identity() def __call__(self, sample): image, focal = sample['image'], sample['focal'] image = self.to_tensor(image) image = self.normalize(image) image = self.resize(image) if self.mode == 'test': return {'image': image, 'focal': focal} depth = sample['depth'] if self.mode == 'train': depth = self.to_tensor(depth) return {**sample, 'image': image, 'depth': depth, 'focal': focal} else: has_valid_depth = sample['has_valid_depth'] image = self.resize(image) return {**sample, 'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth, 'image_path': sample['image_path'], 'depth_path': sample['depth_path']} def to_tensor(self, pic): if not (_is_pil_image(pic) or _is_numpy_image(pic)): raise TypeError( 'pic should be PIL Image or ndarray. Got {}'.format(type(pic))) if isinstance(pic, np.ndarray): img = torch.from_numpy(pic.transpose((2, 0, 1))) return img # handle PIL Image if pic.mode == 'I': img = torch.from_numpy(np.array(pic, np.int32, copy=False)) elif pic.mode == 'I;16': img = torch.from_numpy(np.array(pic, np.int16, copy=False)) else: img = torch.ByteTensor( torch.ByteStorage.from_buffer(pic.tobytes())) # PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK if pic.mode == 'YCbCr': nchannel = 3 elif pic.mode == 'I;16': nchannel = 1 else: nchannel = len(pic.mode) img = img.view(pic.size[1], pic.size[0], nchannel) img = img.transpose(0, 1).transpose(0, 2).contiguous() if isinstance(img, torch.ByteTensor): return img.float() else: return img