import gradio as gr import os from huggingface_hub import InferenceClient from transformers import AutoTokenizer, AutoModelForSeq2SeqLM """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") access_token=os.environ['token'] # Load Model model_directory = 'paulpall/GEC_Estonian_OPUS-MT' tokenizer = AutoTokenizer.from_pretrained(model_directory, token=access_token) model = AutoModelForSeq2SeqLM.from_pretrained(model_directory, token=access_token) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Generate corrected sentence input_ids = tokenizer.encode(message, padding='max_length', truncation=True, max_length=128, return_tensors='pt') output_ids = model.generate(input_ids=input_ids.to(model.device)) output_sentence = tokenizer.decode(output_ids[0], skip_special_tokens=True).replace(r"▁",r" ") response = output_sentence yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond ) if __name__ == "__main__": demo.launch()