Spaces:
Sleeping
Sleeping
File size: 10,548 Bytes
e52682b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import json
import math
import argparse
import warnings
import traceback
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
import sys
sys.path.append('./')
from videollama2 import model_init, mm_infer
from videollama2.utils import disable_torch_init
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560)
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
def split_list(lst, n):
"""Split a list into n (roughly) equal-sized chunks"""
chunk_size = math.ceil(len(lst) / n) # integer division
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
def get_chunk(lst, n, k):
chunks = split_list(lst, n)
return chunks[k]
class ClothoAQADataset(Dataset):
audoi_formats = ['.wav', '.flac']
def __init__(self, questions, processor):
self.questions = questions
self.processor = processor
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
sample = self.questions[idx]
audio_path = sample['audio']
question = sample['conversations'][0]["value"]
wrapped_question = f"Question: {question}\nAnswer the question using a single word."
question_id = sample['id']
answer = sample['conversations'][1]["value"]
audio_tensor = self.processor(audio_path)
return {
'audio': audio_tensor,
'audio_name': audio_path.split("/")[-1],
'question': wrapped_question,
'question_id': question_id,
'answer': answer,
}
class ClothoDataset(Dataset):
audoi_formats = ['.wav', '.flac']
def __init__(self, questions, processor):
self.questions = questions
self.processor = processor
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
sample = self.questions[idx]
audio_path = sample['audio']
wrapped_question = f"Describe the audio."
question_id = audio_path.split("/")[-1]
answer = sample['captions']
audio_tensor = self.processor(audio_path)
return {
'audio': audio_tensor,
'audio_name': audio_path.split("/")[-1],
'question': wrapped_question,
'question_id': question_id,
'answer': answer,
}
class TUT2017Dataset(Dataset):
audoi_formats = ['.wav', '.flac']
def __init__(self, questions, processor):
self.questions = questions
self.processor = processor
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
sample = self.questions[idx]
audio_path = sample['audio']
wrapped_question = f"Question: Identify the sound event in the audio.\nOptions:\n(A) beach\n(B) bus\n(C) cafe or restaurant\n(D) car\n(E) city center\n(F) forest path\n(G) grocery store\n(H) home\n(I) library\n(J) metro station\n(K) office\n(L) park\n(M) residential area\n(N) train\n(O) tram\n.Answer with the option's letter from the given choices directly and only give the best option."
question_id = audio_path.split("/")[-1]
answer = sample['gt']
audio_tensor = self.processor(audio_path)
return {
'audio': audio_tensor,
'audio_name': audio_path.split("/")[-1],
'question': wrapped_question,
'question_id': question_id,
'answer': answer,
}
class VocalSoundDataset(Dataset):
audoi_formats = ['.wav', '.flac']
def __init__(self, questions, processor):
self.questions = questions
self.processor = processor
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
sample = self.questions[idx]
audio_path = sample['audio']
wrapped_question = f"Identify the human sound in the audio.\nOptions:\n(A) Laughter\n(B) Sigh\n(C) Cough\n(D) Throat clearing\n(E) Sneeze\n(F) Sniff\n.Answer with the option's letter from the given choices directly and only give the best option."
question_id = audio_path.split("/")[-1]
answer = sample['gt']
audio_tensor = self.processor(audio_path)
return {
'audio': audio_tensor,
'audio_name': audio_path.split("/")[-1],
'question': wrapped_question,
'question_id': question_id,
'answer': answer,
}
class AIRDataset(Dataset):
audoi_formats = ['.wav', '.flac']
def __init__(self, questions, processor):
self.questions = questions
self.processor = processor
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
sample = self.questions[idx]
audio_path = sample['audio']
wrapped_question = sample['query']
question_id = sample['id']
answer = sample['answer']
audio_tensor = self.processor(audio_path)
return {
'audio': audio_tensor,
'audio_name': audio_path.split("/")[-1],
'question': wrapped_question,
'question_id': question_id,
'answer': answer,
}
def collate_fn(batch):
vid = [x['audio'] for x in batch]
v_id = [x['audio_name'] for x in batch]
qus = [x['question'] for x in batch]
qid = [x['question_id'] for x in batch]
ans = [x['answer'] for x in batch]
return vid, v_id, qus, qid, ans
def run_inference(args):
disable_torch_init()
# Initialize the model
model, processor, tokenizer = model_init(args.model_path)
model.model.vision_tower = None
assert args.batch_size == 1, "Batch size must be 1 for inference"
if args.dataset == "clothoAQA":
gt_questions = json.load(open(args.question_file, "r"))
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
dataset = ClothoAQADataset(gt_questions, processor['audio'])
elif args.dataset == "clotho":
import csv
gt_questions = []
with open(args.question_file, mode='r', encoding='utf-8') as file:
reader = csv.reader(file)
header = next(reader) # remove header
for row in reader:
gt_questions.append({
"audio": os.path.join(args.video_folder, row[0]),
"captions": row[1:]
})
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
dataset = ClothoDataset(gt_questions, processor['audio'])
elif args.dataset == "TUT2017":
gt_questions = []
with open(args.question_file, "r") as fp:
for x in fp.readlines():
gt_questions.append(json.loads(x))
gt_questions[-1]["audio"] = os.path.join(args.video_folder, gt_questions[-1]["audio"])
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
dataset = TUT2017Dataset(gt_questions, processor['audio'])
elif args.dataset == "vocalsound":
gt_questions = []
with open(args.question_file, "r") as fp:
for x in fp.readlines():
gt_questions.append(json.loads(x))
gt_questions[-1]["audio"] = os.path.join(args.video_folder, gt_questions[-1]["audio"].split("/")[-1])
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
dataset = VocalSoundDataset(gt_questions, processor['audio'])
elif args.dataset == "AIR":
gt_answer = {x["uniq_id"]: x for x in json.load(open(args.answer_file, "r"))}
gt_questions = []
with open(args.question_file, "r") as fp:
for x in fp.readlines():
gt_questions.append(json.loads(x))
gt_questions[-1]["answer"] = gt_answer[gt_questions[-1]["id"]]["answer_gt"]
gt_questions = get_chunk(gt_questions, args.num_chunks, args.chunk_idx)
dataset = AIRDataset(gt_questions, processor['audio'])
else:
raise NotImplementedError
dataloader = DataLoader(dataset, shuffle=False, batch_size=args.batch_size, num_workers=args.num_workers, collate_fn=collate_fn)
answer_file = os.path.join(args.output_file)
os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
ans_file = open(answer_file, "w")
# Iterate over each sample in the ground truth file
for i, (audio_tensors, audio_names, questions, question_ids, answers) in enumerate(tqdm(dataloader)):
audio_tensor = audio_tensors[0]
audio_name = audio_names[0]
question = questions[0]
question_id = question_ids[0]
answer = answers[0]
# question = question + '\n' + 'Answer the question using a single word or a short phrase with multiple words.'
try:
output = mm_infer(
audio_tensor,
question,
model=model,
tokenizer=tokenizer,
modal='audio',
do_sample=False,
)
except:
traceback.print_exc()
output = "error"
sample_set = {'id': question_id, 'question': question, 'answer': answer, 'pred': output}
ans_file.write(json.dumps(sample_set) + "\n")
ans_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', help='', required=True)
parser.add_argument('--video-folder', help='Directory containing video files.', required=True)
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True)
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=False)
parser.add_argument('--output-file', help='Directory to save the model results JSON.', required=True)
parser.add_argument("--num-chunks", type=int, default=1)
parser.add_argument("--chunk-idx", type=int, default=0)
parser.add_argument("--device", type=str, required=False, default='cuda:0')
parser.add_argument("--batch-size", type=int, required=False, default=1)
parser.add_argument("--num-workers", type=int, required=False, default=8)
parser.add_argument("--dataset", type=str, required=True)
args = parser.parse_args()
run_inference(args)
|