File size: 10,817 Bytes
e52682b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


import os
import warnings
import shutil

import torch
from transformers import PretrainedConfig, AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig

from .projector import load_mm_projector
from .videollama2_llama import Videollama2LlamaForCausalLM, Videollama2LlamaConfig
from .videollama2_mistral import Videollama2MistralForCausalLM, Videollama2MistralConfig
from .videollama2_mixtral import Videollama2MixtralForCausalLM, Videollama2MixtralConfig
from .videollama2_qwen2 import Videollama2Qwen2ForCausalLM, Videollama2Qwen2Config
from .videollama2_gemma2 import Videollama2Gemma2ForCausalLM, Videollama2Gemma2Config
from .videollama2_phi3 import Videollama2Phi3ForCausalLM, Videollama2Phi3Config


VLLMs = {
    "videollama2": Videollama2MistralForCausalLM,
    "videollama2_llama": Videollama2LlamaForCausalLM,
    "videollama2_mistral": Videollama2MistralForCausalLM,
    "videollama2_mixtral": Videollama2MixtralForCausalLM,
    "videollama2_qwen2": Videollama2Qwen2ForCausalLM,
    "videollama2_gemma2": Videollama2Gemma2ForCausalLM,
    "videollama2_phi3": Videollama2Phi3ForCausalLM,
}

VLLMConfigs = {
    "videollama2": Videollama2MistralConfig,
    "videollama2_llama": Videollama2LlamaConfig,
    "videollama2_mistral": Videollama2MistralConfig,
    "videollama2_mixtral": Videollama2MixtralConfig,
    "videollama2_qwen2": Videollama2Qwen2Config,
    "videollama2_gemma2": Videollama2Gemma2Config,
    "videollama2_phi3": Videollama2Phi3Config,
}


def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
    if 'token' in kwargs:
        token = kwargs['token']
    else:
        token = None
    
    kwargs = {"device_map": device_map, **kwargs}

    if device != "cuda":
        kwargs['device_map'] = {"": device}

    if load_8bit:
        kwargs['load_in_8bit'] = True
    elif load_4bit:
        # NOTE: High-version Transformers will report: """ValueError: You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing `quantization_config` argument at the same time."""
        # kwargs['load_in_4bit'] = True
        kwargs['quantization_config'] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4'
        )
    else:
        kwargs['torch_dtype'] = torch.float16

    if use_flash_attn:
        kwargs['attn_implementation'] = 'flash_attention_2'

    config = AutoConfig.from_pretrained(model_path)

    # judge model type
    model_type = config.model_type

    # judge pretrain/finetune
    try:
        is_pretraining = config.tune_mm_mlp_adapter
    except:
        is_pretraining = False

    # NOTE: lora/qlora model loading
    if 'lora' in model_name.lower() or 'qlora' in model_name.lower():
        cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
        # NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
        # cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
        model_base = model_base if model_base is not None else cfg_pretrained._name_or_path

        # NOTE: remove qlora training quantization config 
        if hasattr(lora_cfg_pretrained, 'quantization_config'):
            del lora_cfg_pretrained.quantization_config
        tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)
        print('Loading VideoLLaMA from base model...')

        if 'vicuna' in model_base.lower():
            model = Videollama2LlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        elif 'mistral' in model_base.lower():
            model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        else:
            model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)

        token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
        if model.lm_head.weight.shape[0] != token_num:
            model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
            model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))

        print('Loading additional VideoLLaMA weights...')
        if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
            non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
        else:
            # this is probably from HF Hub
            from huggingface_hub import hf_hub_download
            def load_from_hf(repo_id, filename, subfolder=None):
                cache_file = hf_hub_download(
                    repo_id=repo_id,
                    filename=filename,
                    subfolder=subfolder)
                return torch.load(cache_file, map_location='cpu')
            non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
        non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
        if any(k.startswith('model.model.') for k in non_lora_trainables):
            non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
        model.load_state_dict(non_lora_trainables, strict=False)

        from peft import PeftModel
        print('Loading LoRA weights...')
        model = PeftModel.from_pretrained(model, model_path)
        print('Merging LoRA weights...')
        model = model.merge_and_unload()
        print('Model is loaded...')
    elif model_base is not None or '-base' in model_name.lower() or is_pretraining:
        # NOTE: Base/Pretrain model loading
        print('Loading VideoLLaMA 2 from base model...')
        cfg_pretrained = PretrainedConfig.from_pretrained(model_path, token=token)
        # NOTE: AutoConfig will modify `_name_or_path` property to `model_path` if `model_path` is not None.
        # cfg_pretrained = AutoConfig.from_pretrained(model_path, token=token)
        model_base = model_base if model_base is not None else cfg_pretrained._name_or_path

        tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False, token=token)

        if model_type in ['videollama2', 'videollama2_mistral']:
            model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_mixtral']:
            model = Videollama2MixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_qwen2']:
            model = Videollama2Qwen2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_gemma2']:
            model = Videollama2Gemma2ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_phi3']:
            model = Videollama2Phi3ForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
        else:
            model = Videollama2MistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)

        # NOTE; loading vision-language projector
        # * old codes for loading local mm_projector.bin
        # mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
        # mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
        # model.load_state_dict(mm_projector_weights, strict=False)
        # * new codes which supports loading mm_projector.bin both offline and online 
        mm_projector_weights = load_mm_projector(model_path, token=token)
        model.load_state_dict(mm_projector_weights, strict=False)
    elif 'videollama2' in model_type:
        # NOTE: SFT model loading
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, token=token)

        if model_type in ['videollama2', 'videollama2_mistral']:
            model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_mixtral']:
            model = Videollama2MixtralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_qwen2']:
            model = Videollama2Qwen2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_gemma2']:
            model = Videollama2Gemma2ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
        elif model_type in ['videollama2_phi3']:
            model = Videollama2Phi3ForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
        else:
            model = Videollama2MistralForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, config=config, **kwargs)
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, token=token)
        model = AutoModelForCausalLM.from_pretrained(model_path, config=config, **kwargs)

    processor = None

    if "videollama" in model_type:
        vision_tower = model.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model()
        vision_tower.to(device=device, dtype=torch.float16)
        # NOTE: videollama2 adopts the same processor for processing image and video.
        processor = vision_tower.image_processor

    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    return tokenizer, model, processor, context_len