Upload 2 files
Browse files- app.py +60 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
import librosa
|
4 |
+
from tensorflow.keras.models import Sequential, model_from_json
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
json_file = open('/content/drive/MyDrive/Project/Audio/CNN_model.json', 'r')
|
8 |
+
loaded_model_json = json_file.read()
|
9 |
+
json_file.close()
|
10 |
+
loaded_model = model_from_json(loaded_model_json)
|
11 |
+
# load weights into new model
|
12 |
+
loaded_model.load_weights("/content/drive/MyDrive/Project/Audio/best_model1_weights.h5")
|
13 |
+
|
14 |
+
|
15 |
+
with open('/content/drive/MyDrive/Project/Audio/scaler2.pickle', 'rb') as f:
|
16 |
+
scaler2 = pickle.load(f)
|
17 |
+
|
18 |
+
with open('/content/drive/MyDrive/Project/Audio/encoder2.pickle', 'rb') as f:
|
19 |
+
encoder2 = pickle.load(f)
|
20 |
+
|
21 |
+
|
22 |
+
def zcr(data,frame_length,hop_length):
|
23 |
+
zcr=librosa.feature.zero_crossing_rate(data,frame_length=frame_length,hop_length=hop_length)
|
24 |
+
return np.squeeze(zcr)
|
25 |
+
def rmse(data,frame_length=2048,hop_length=512):
|
26 |
+
rmse=librosa.feature.rms(y=data,frame_length=frame_length,hop_length=hop_length)
|
27 |
+
return np.squeeze(rmse)
|
28 |
+
def mfcc(data,sr,frame_length=2048,hop_length=512,flatten:bool=True):
|
29 |
+
mfcc=librosa.feature.mfcc(y=data,sr=sr)
|
30 |
+
return np.squeeze(mfcc.T)if not flatten else np.ravel(mfcc.T)
|
31 |
+
|
32 |
+
def extract_features(data,sr=22050,frame_length=2048,hop_length=512):
|
33 |
+
result=np.array([])
|
34 |
+
|
35 |
+
result=np.hstack((result,
|
36 |
+
zcr(data,frame_length,hop_length),
|
37 |
+
rmse(data,frame_length,hop_length),
|
38 |
+
mfcc(data,sr,frame_length,hop_length)
|
39 |
+
))
|
40 |
+
return result
|
41 |
+
|
42 |
+
def get_predict_feat(path):
|
43 |
+
d, s_rate= librosa.load(path, duration=2.5, offset=0.6)
|
44 |
+
res=extract_features(d)
|
45 |
+
result=np.array(res)
|
46 |
+
result=np.reshape(result,newshape=(1,2376))
|
47 |
+
i_result = scaler2.transform(result)
|
48 |
+
final_result=np.expand_dims(i_result, axis=2)
|
49 |
+
|
50 |
+
return final_result
|
51 |
+
|
52 |
+
emotions1={1:'Neutral', 2:'Calm', 3:'Happy', 4:'Sad', 5:'Angry', 6:'Fear', 7:'Disgust',8:'Surprise'}
|
53 |
+
def prediction(path1):
|
54 |
+
res = get_predict_feat(path1)
|
55 |
+
predictions = loaded_model.predict(res)
|
56 |
+
predicted_class = predictions.argmax(axis=1)[0] + 1 # Convert from 0-based indexing to emotion labels
|
57 |
+
predicted_emotion = emotions1[predicted_class] # Get the corresponding emotion label
|
58 |
+
return predicted_emotion[0]
|
59 |
+
|
60 |
+
gr.Interface(fn=prediction, inputs="audio", outputs="text").launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
transformers
|