|
|
|
import os |
|
from fastai.vision.all import * |
|
import gradio as gr |
|
|
|
|
|
learn_emotion = load_learner('emotions_vgg19.pkl') |
|
learn_emotion_labels = learn_emotion.dls.vocab |
|
|
|
|
|
|
|
def predict(img): |
|
img = PILImage.create(img) |
|
pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img) |
|
predicted_emotion = learn_emotion_labels[pred_emotion_idx] |
|
return predicted_emotion |
|
|
|
|
|
|
|
title = "Facial Emotion Detector" |
|
|
|
description = gr.Markdown( |
|
"""Ever wondered what a person might be feeling looking at their picture? |
|
Well, now you can! Try this fun app. Just upload a facial image in JPG or |
|
PNG format. You can now see what they might have felt when the picture |
|
was taken. |
|
|
|
**Tip**: Be sure to only include face to get best results. Check some sample images |
|
below for inspiration!""").value |
|
|
|
article = gr.Markdown( |
|
"""**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and |
|
interpret results at your own risk!. |
|
|
|
**PREMISE:** The idea is to determine an overall emotion of a person |
|
based on the pictures. We are restricting pictures to only include close-up facial |
|
images. |
|
|
|
**DATA:** FER2013 dataset consists of 48x48 pixel grayscale images of faces.Images |
|
are assigned one of the 7 emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. |
|
|
|
""").value |
|
|
|
enable_queue=True |
|
|
|
examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg'] |
|
|
|
gr.Interface(fn = predict, |
|
inputs = gr.Image( image_mode='L'), |
|
outputs = [gr.Label(label='Emotion')], |
|
title = title, |
|
examples = examples, |
|
description = description, |
|
article=article, |
|
allow_flagging='never').launch() |
|
|
|
|