Spaces:
Sleeping
Sleeping
File size: 2,743 Bytes
34b369f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
"""
The file which does the all work. Calling all the pipeline to do the training.
"""
from src.TextSummarizer.logger import backend_logger
from src.TextSummarizer.pipeline.step_01_data_ingestion import DataIngestionPipeline
from src.TextSummarizer.pipeline.step_02_data_validation import DataValidationPipeline
from src.TextSummarizer.pipeline.step_03_data_transformation import (
DataTransformationPipeline,
)
from src.TextSummarizer.pipeline.step_04_train_model import ModelTrainerPipeline
from src.TextSummarizer.pipeline.step_05_model_evaluation import ModelEvaluationPipeline
stage_name_01: str = "Stage 1: Data Integration Stage"
stage_name_02: str = "Stage 2: Data Validation Stage"
stage_name_03: str = "Stage 3: Data Transformation Stage"
stage_name_04: str = "Stage 4: Model training Stage"
stage_name_05: str = "Stage 5: Model Evaluation Stage"
line_msg: str = "="*100
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_01} started")
DataIngestionPipeline().run()
backend_logger.info(f"Stage {stage_name_01} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data ingestion pipeline failed. Reason: {err}")
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_02} started")
DataValidationPipeline().run()
backend_logger.info(f"Stage {stage_name_02} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data validation pipeline failed. Reason: {err}")
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_03} started")
DataTransformationPipeline().run()
backend_logger.info(f"Stage {stage_name_03} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data Transformation pipeline failed. Reason: {err}")
# For the device limitations issues, i have trained the model on online and stored the model in huggingface profile.
# We can skip the training and model evaluation steps while running locally.
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_04} started")
ModelTrainerPipeline().run()
backend_logger.info(f"Stage {stage_name_04} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data data training pipeline failed. Reason: {err}")
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_05} started")
ModelEvaluationPipeline().run()
backend_logger.info(f"Stage {stage_name_05} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Model evaluation pipeline failed. Reason: {err}")
|