pavithra-devi's picture
added the appilication
34b369f
raw
history blame
2.74 kB
"""
The file which does the all work. Calling all the pipeline to do the training.
"""
from src.TextSummarizer.logger import backend_logger
from src.TextSummarizer.pipeline.step_01_data_ingestion import DataIngestionPipeline
from src.TextSummarizer.pipeline.step_02_data_validation import DataValidationPipeline
from src.TextSummarizer.pipeline.step_03_data_transformation import (
DataTransformationPipeline,
)
from src.TextSummarizer.pipeline.step_04_train_model import ModelTrainerPipeline
from src.TextSummarizer.pipeline.step_05_model_evaluation import ModelEvaluationPipeline
stage_name_01: str = "Stage 1: Data Integration Stage"
stage_name_02: str = "Stage 2: Data Validation Stage"
stage_name_03: str = "Stage 3: Data Transformation Stage"
stage_name_04: str = "Stage 4: Model training Stage"
stage_name_05: str = "Stage 5: Model Evaluation Stage"
line_msg: str = "="*100
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_01} started")
DataIngestionPipeline().run()
backend_logger.info(f"Stage {stage_name_01} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data ingestion pipeline failed. Reason: {err}")
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_02} started")
DataValidationPipeline().run()
backend_logger.info(f"Stage {stage_name_02} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data validation pipeline failed. Reason: {err}")
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_03} started")
DataTransformationPipeline().run()
backend_logger.info(f"Stage {stage_name_03} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data Transformation pipeline failed. Reason: {err}")
# For the device limitations issues, i have trained the model on online and stored the model in huggingface profile.
# We can skip the training and model evaluation steps while running locally.
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_04} started")
ModelTrainerPipeline().run()
backend_logger.info(f"Stage {stage_name_04} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Data data training pipeline failed. Reason: {err}")
try:
backend_logger.info(line_msg)
backend_logger.info(f"Stage {stage_name_05} started")
ModelEvaluationPipeline().run()
backend_logger.info(f"Stage {stage_name_05} completed.")
backend_logger.info(line_msg)
except Exception as err:
backend_logger.error(f"Model evaluation pipeline failed. Reason: {err}")