pavithra-devi commited on
Commit
4a10621
·
1 Parent(s): e3583d3

added the app.py file

Browse files
app.py CHANGED
@@ -1,8 +1,25 @@
1
  import gradio as gr
2
 
 
3
 
4
- def greet(name):
5
- return "Hello " + name + "!!"
6
 
7
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
8
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
 
3
+ from src.TextSummarizer.pipeline.prediction import PredictionPipeline
4
 
 
 
5
 
6
+ def predict(document):
7
+ """
8
+ Method will take the document and summarize it.
9
+ """
10
+
11
+ # predict the summary using my own pre-trained model.
12
+ summary = PredictionPipeline().predict(document)
13
+ return summary
14
+
15
+
16
+ # Create the frontend.
17
+ input_interfaces: list = []
18
+
19
+ with gr.Blocks(theme=gr.theme.Soft()) as app:
20
+ with gr.Row():
21
+ title = "Text Summarizer..."
22
+
23
+
24
+
25
+ app.launch()
requirements.txt CHANGED
@@ -13,7 +13,7 @@ transformers
13
  # notebook
14
  # boto3
15
  # mypy-boto3-s3
16
- # python-box==6.0.2
17
  # ensure==1.0.2
18
  # fastapi==0.78.0
19
  # uvicorn==0.18.3
 
13
  # notebook
14
  # boto3
15
  # mypy-boto3-s3
16
+ python-box==6.0.2
17
  # ensure==1.0.2
18
  # fastapi==0.78.0
19
  # uvicorn==0.18.3
src/TextSummarizer/pipeline/prediction.py CHANGED
@@ -7,12 +7,13 @@ class PredictionPipeline:
7
  def __init__(self):
8
  self.config = ConfigManager().get_model_evaluation_config()
9
 
10
- def predict(self,text):
11
  """
12
  Predict the tex summarization for the given text.
13
  """
14
  gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}
15
 
 
16
  summarizer = pipeline("summarization", model=self.config.hub_model_name)
17
 
18
  print("document:")
 
7
  def __init__(self):
8
  self.config = ConfigManager().get_model_evaluation_config()
9
 
10
+ def predict(self, text):
11
  """
12
  Predict the tex summarization for the given text.
13
  """
14
  gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128}
15
 
16
+ # Call our own pretrained model from hugging face.
17
  summarizer = pipeline("summarization", model=self.config.hub_model_name)
18
 
19
  print("document:")