import os import pandas as pd import torch from datasets import load_dataset, load_from_disk, load_metric from tqdm import tqdm from transformers import AutoModelForSeq2SeqLM, AutoTokenizer from src.TextSummarizer.entity import entities from src.TextSummarizer.logger import backend_logger class ModelEvaluation: def __init__(self, config: entities.ModelEvaluationConfig): self.config = config def generate_batch_sized_chunks(self,list_of_elements, batch_size): """split the dataset into smaller batches that we can process simultaneously Yield successive batch-sized chunks from list_of_elements.""" for i in range(0, len(list_of_elements), batch_size): yield list_of_elements[i : i + batch_size] def calculate_metric_on_test_ds(self, dataset, metric, model, tokenizer, batch_size=16, device="cuda" if torch.cuda.is_available() else "cpu", column_text="article", column_summary="highlights"): """ Calculate the metrics. """ article_batches = list(self.generate_batch_sized_chunks(dataset[column_text], batch_size)) target_batches = list(self.generate_batch_sized_chunks(dataset[column_summary], batch_size)) for article_batch, target_batch in tqdm( zip(article_batches, target_batches), total=len(article_batches)): inputs = tokenizer(article_batch, max_length=1024, truncation=True, padding="max_length", return_tensors="pt") summaries = model.generate(input_ids=inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), length_penalty=0.8, num_beams=8, max_length=128) ''' parameter for length penalty ensures that the model does not generate sequences that are too long. ''' # Finally, we decode the generated texts, # replace the token, and add the decoded texts with the references to the metric. decoded_summaries = [tokenizer.decode(s, skip_special_tokens=True, clean_up_tokenization_spaces=True) for s in summaries] decoded_summaries = [d.replace("", " ") for d in decoded_summaries] metric.add_batch(predictions=decoded_summaries, references=target_batch) # Finally compute and return the ROUGE scores. score = metric.compute() return score def run(self): """ Run the model evaluation step. """ device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = AutoTokenizer.from_pretrained(self.config.tokenizer_path) model_pegasus = AutoModelForSeq2SeqLM.from_pretrained(self.config.model_path).to(device) #loading data dataset_samsum_pt = load_from_disk(self.config.data_path) rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"] rouge_metric = load_metric('rouge') score = self.calculate_metric_on_test_ds( dataset_samsum_pt['test'][0:10], rouge_metric, model_pegasus, tokenizer, batch_size = 2, column_text = 'dialogue', column_summary= 'summary' ) rouge_dict = dict((rn, score[rn].mid.fmeasure ) for rn in rouge_names ) df = pd.DataFrame(rouge_dict, index = ['pegasus'] ) df.to_csv(self.config.metric_file_name, index=False)