from transformers import pipeline from src.TextSummarizer.config.config_manager import ConfigManager class PredictionPipeline: def __init__(self): self.config = ConfigManager().get_model_evaluation_config() def predict(self, text): """ Predict the tex summarization for the given text. """ gen_kwargs = {"length_penalty": 0.8, "num_beams":8, "max_length": 128} # Call our own pretrained model from hugging face. summarizer = pipeline("summarization", model=self.config.hub_model_name) print("document:") print(text) output = summarizer(text, **gen_kwargs)[0]["summary_text"] print("\nModel Summary:") print(output) return output