Spaces:
Sleeping
Sleeping
from io import BytesIO | |
from ...utils.azureOCR import analyze_image | |
from ...utils.imageUtils import resize_if_needed, all_cropped_images_to_one_image | |
from .panDataExtractor import extract_panData | |
# from collections import defaultdict | |
def process_results(results, img): | |
label_indices = {"pan_num": 0, "name": 1, "father": 2, "dob": 3} | |
confidence_threshold = 0.3 | |
input_image_format = img.format if img.format else "PNG" | |
valid_formats = ["JPEG", "PNG", "BMP", "GIF", "TIFF"] | |
input_image_format = input_image_format if input_image_format in valid_formats else "PNG" | |
best_crops = {label: (None, -1) for label in label_indices.keys()} # Store best (image, confidence) pairs | |
precision_data = {label: {"correct": 0, "total": 0} for label in label_indices.keys()} | |
for result in results: | |
for bbox, cls, conf in zip(result.boxes.xyxy, result.boxes.cls, result.boxes.conf): | |
# Ensure the class index is within the bounds of the label list | |
if int(cls) >= len(label_indices): | |
print(f"Warning: Class index {cls} is out of range. Skipping this bbox.") | |
continue | |
label = list(label_indices.keys())[int(cls)] | |
print(label, conf) | |
if conf < confidence_threshold: | |
continue | |
x1, y1, x2, y2 = map(int, bbox.tolist()) | |
crop_img = img.crop((x1, y1, x2, y2)) | |
crop_img = resize_if_needed(crop_img) | |
crop_img.save(f"temp_{label}.png") | |
# Replace old crop if new one has higher confidence | |
_, best_conf = best_crops[label] | |
if conf > best_conf: | |
best_crops[label] = (crop_img, conf) | |
precision_data[label]["total"] += 1 | |
precision_data[label]["correct"] += 1 # Replace with actual OCR validation check | |
# Extract the images for final processing | |
cropped_images_with_labels = [(img, label_indices[label], conf) for label, (img, conf) in best_crops.items() if img is not None] | |
# Sort the images by their label indices in ascending order | |
cropped_images_with_labels.sort(key=lambda x: x[1]) | |
print(cropped_images_with_labels, "cropped images with labels") | |
if not cropped_images_with_labels: | |
raise ValueError("No images were cropped.") | |
# Extract only the images for concatenation | |
cropped_images = [img for img, _, _ in cropped_images_with_labels] | |
final_image = all_cropped_images_to_one_image(cropped_images, separator_image_path='app/utils/seprator3.png') | |
buffer = BytesIO() | |
final_image.save(buffer, format=input_image_format) | |
buffer.seek(0) | |
response = analyze_image(buffer.getvalue(), input_image_format) | |
print(response, "response") | |
lines = response['readResult']['blocks'][0]['lines'] | |
texts = [line['text'] for line in lines] | |
print(texts, "text after microsoft ocr") | |
extracted_data = extract_panData(texts) | |
return extracted_data |