from PIL import Image import cv2 import numpy as np def resize_if_needed(image): width, height = image.size if width < 50 or height < 50: scale = max(70 / width, 70 / height) elif width > 16000 or height > 16000: scale = min(16000 / width, 16000 / height) else: return image return image.resize((int(width * scale), int(height * scale)), Image.LANCZOS) def center_on_white_background(image): width, height = image.size if width < 150 and height < 50: background = Image.new('RGB', (150, 150), (255, 255, 255)) x, y = (150 - width) // 2, (150 - height) // 2 background.paste(image, (x, y)) return background return image def all_cropped_images_to_one_image(cropped_images, separator_image_path): separator_image = Image.open(separator_image_path) separator_height = separator_image.height total_height = sum(img.height for img in cropped_images) + (len(cropped_images) - 1) * separator_height print("Total Height:", total_height) max_width = max(max(img.width for img in cropped_images), separator_image.width) print("Max Width:", max_width) combined_image = Image.new('RGB', (max_width, total_height)) y = 0 print(cropped_images, "before combine") for i, img in enumerate(cropped_images): combined_image.paste(img, (0, y)) y += img.height if i < len(cropped_images) - 1: combined_image.paste(separator_image, (0, y)) y += separator_height combined_image.save("combinedImage.png") return combined_image def preprocess_image(image): gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY) _, binary = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return Image.fromarray(binary)