import os,torch import gradio as gr from PIL import Image from torchvision import transforms as T from huggingface_hub import hf_hub_download from tokenizer import Tokenizer TOKEN = os.getenv('hf_read_token') repo_id = "Nischay103/captcha_recognition" model_file = 'captcha_model.pt' model_path = hf_hub_download(repo_id=repo_id, filename=model_file, token=TOKEN) charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" _tokenizer = Tokenizer(charset) def get_transform(img_size=(32,128)): transforms = [] transforms.extend([ T.Resize(img_size, T.InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(0.5, 0.5) ]) return T.Compose(transforms) transform = get_transform() image = gr.Image(type="pil", label="captcha image") text = gr.Textbox(label="recognized character sequence") def recognize_captcha(input): input = transform(input.convert('RGB')).unsqueeze(0) model = torch.jit.load(model_path) with torch.no_grad(): probs = model(input) preds,_ = _tokenizer.decode(probs,beam_width=2) return preds[0] iface = gr.Interface( fn = recognize_captcha, inputs = image, outputs= text, title = "character sequence recognition from scene-image (captcha)", description = "recognize captchas ", examples = ['examples/251615.png','examples/e7dx2r.jpg','examples/980209.png','examples/2DMM4.png', 'examples/H1GQD.png','examples/Sv5Cwm.jpg','examples/Wwx7.png','examples/qw7vr.png', 'examples/mCCyy.jpg','examples/mCGe.jpg'] ) iface.launch()