Spaces:
Runtime error
Runtime error
File size: 5,384 Bytes
bfea304 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# Scene Text Recognition Model Hub
# Copyright 2022 Darwin Bautista
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import PurePath
from typing import Callable, Optional, Sequence
from torch.utils.data import DataLoader
from torchvision import transforms as T
import pytorch_lightning as pl
from .dataset import LmdbDataset, build_tree_dataset
class SceneTextDataModule(pl.LightningDataModule):
TEST_BENCHMARK_SUB = ('IIIT5k', 'SVT', 'IC13_857', 'IC15_1811', 'SVTP', 'CUTE80')
TEST_BENCHMARK = ('IIIT5k', 'SVT', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80')
TEST_NEW = ('ArT', 'COCOv1.4', 'Uber')
TEST_ALL = tuple(set(TEST_BENCHMARK_SUB + TEST_BENCHMARK + TEST_NEW))
def __init__(
self,
root_dir: str,
train_dir: str,
img_size: Sequence[int],
max_label_length: int,
charset_train: str,
charset_test: str,
batch_size: int,
num_workers: int,
augment: bool,
remove_whitespace: bool = True,
normalize_unicode: bool = True,
min_image_dim: int = 0,
rotation: int = 0,
collate_fn: Optional[Callable] = None,
):
super().__init__()
self.root_dir = root_dir
self.train_dir = train_dir
self.img_size = tuple(img_size)
self.max_label_length = max_label_length
self.charset_train = charset_train
self.charset_test = charset_test
self.batch_size = batch_size
self.num_workers = num_workers
self.augment = augment
self.remove_whitespace = remove_whitespace
self.normalize_unicode = normalize_unicode
self.min_image_dim = min_image_dim
self.rotation = rotation
self.collate_fn = collate_fn
self._train_dataset = None
self._val_dataset = None
@staticmethod
def get_transform(img_size: tuple[int], augment: bool = False, rotation: int = 0):
transforms = []
if augment:
from .augment import rand_augment_transform
transforms.append(rand_augment_transform())
if rotation:
transforms.append(lambda img: img.rotate(rotation, expand=True))
transforms.extend([
T.Resize(img_size, T.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(0.5, 0.5),
])
return T.Compose(transforms)
@property
def train_dataset(self):
if self._train_dataset is None:
transform = self.get_transform(self.img_size, self.augment)
root = PurePath(self.root_dir, 'train', self.train_dir)
self._train_dataset = build_tree_dataset(
root,
self.charset_train,
self.max_label_length,
self.min_image_dim,
self.remove_whitespace,
self.normalize_unicode,
transform=transform,
)
return self._train_dataset
@property
def val_dataset(self):
if self._val_dataset is None:
transform = self.get_transform(self.img_size)
root = PurePath(self.root_dir, 'val')
self._val_dataset = build_tree_dataset(
root,
self.charset_test,
self.max_label_length,
self.min_image_dim,
self.remove_whitespace,
self.normalize_unicode,
transform=transform,
)
return self._val_dataset
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
persistent_workers=self.num_workers > 0,
pin_memory=True,
collate_fn=self.collate_fn,
)
def val_dataloader(self):
return DataLoader(
self.val_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
persistent_workers=self.num_workers > 0,
pin_memory=True,
collate_fn=self.collate_fn,
)
def test_dataloaders(self, subset):
transform = self.get_transform(self.img_size, rotation=self.rotation)
root = PurePath(self.root_dir, 'test')
datasets = {
s: LmdbDataset(
str(root / s),
self.charset_test,
self.max_label_length,
self.min_image_dim,
self.remove_whitespace,
self.normalize_unicode,
transform=transform,
)
for s in subset
}
return {
k: DataLoader(
v, batch_size=self.batch_size, num_workers=self.num_workers, pin_memory=True, collate_fn=self.collate_fn
)
for k, v in datasets.items()
}
|