#!/usr/bin/env python3 # Scene Text Recognition Model Hub # Copyright 2022 Darwin Bautista # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from PIL import Image import torch from strhub.data.module import SceneTextDataModule from strhub.models.utils import load_from_checkpoint, parse_model_args @torch.inference_mode() def main(): parser = argparse.ArgumentParser() parser.add_argument('checkpoint', help="Model checkpoint (or 'pretrained=')") parser.add_argument('--images', nargs='+', help='Images to read') parser.add_argument('--device', default='cuda') args, unknown = parser.parse_known_args() kwargs = parse_model_args(unknown) print(f'Additional keyword arguments: {kwargs}') model = load_from_checkpoint(args.checkpoint, **kwargs).eval().to(args.device) img_transform = SceneTextDataModule.get_transform(model.hparams.img_size) for fname in args.images: # Load image and prepare for input image = Image.open(fname).convert('RGB') image = img_transform(image).unsqueeze(0).to(args.device) p = model(image).softmax(-1) pred, p = model.tokenizer.decode(p) print(f'{fname}: {pred[0]}') if __name__ == '__main__': main()