#!/usr/bin/env python3 import math import os import os.path as osp from argparse import ArgumentParser from functools import partial import mmcv from mmocr.utils.fileio import list_to_file from PIL import Image def parse_args(): parser = ArgumentParser( description='Generate training and validation set ' 'of OpenVINO annotations for Open ' 'Images by cropping box image.' ) parser.add_argument('root_path', help='Root dir containing images and annotations') parser.add_argument('n_proc', default=1, type=int, help='Number of processes to run') args = parser.parse_args() return args def process_img(args, src_image_root, dst_image_root): # Dirty hack for multiprocessing img_idx, img_info, anns = args src_img = Image.open(osp.join(src_image_root, img_info['file_name'])) labels = [] for ann_idx, ann in enumerate(anns): attrs = ann['attributes'] text_label = attrs['transcription'] # Ignore illegible or non-English words if not attrs['legible'] or attrs['language'] != 'english': continue x, y, w, h = ann['bbox'] x, y = max(0, math.floor(x)), max(0, math.floor(y)) w, h = math.ceil(w), math.ceil(h) dst_img = src_img.crop((x, y, x + w, y + h)) dst_img_name = f'img_{img_idx}_{ann_idx}.jpg' dst_img_path = osp.join(dst_image_root, dst_img_name) # Preserve JPEG quality dst_img.save(dst_img_path, qtables=src_img.quantization) labels.append(f'{osp.basename(dst_image_root)}/{dst_img_name}' f' {text_label}') src_img.close() return labels def convert_openimages(root_path, dst_image_path, dst_label_filename, annotation_filename, img_start_idx=0, nproc=1): annotation_path = osp.join(root_path, annotation_filename) if not osp.exists(annotation_path): raise Exception(f'{annotation_path} not exists, please check and try again.') src_image_root = root_path # outputs dst_label_file = osp.join(root_path, dst_label_filename) dst_image_root = osp.join(root_path, dst_image_path) os.makedirs(dst_image_root, exist_ok=True) annotation = mmcv.load(annotation_path) process_img_with_path = partial(process_img, src_image_root=src_image_root, dst_image_root=dst_image_root) tasks = [] anns = {} for ann in annotation['annotations']: anns.setdefault(ann['image_id'], []).append(ann) for img_idx, img_info in enumerate(annotation['images']): tasks.append((img_idx + img_start_idx, img_info, anns[img_info['id']])) labels_list = mmcv.track_parallel_progress(process_img_with_path, tasks, keep_order=True, nproc=nproc) final_labels = [] for label_list in labels_list: final_labels += label_list list_to_file(dst_label_file, final_labels) return len(annotation['images']) def main(): args = parse_args() root_path = args.root_path print('Processing training set...') num_train_imgs = 0 for s in '125f': num_train_imgs = convert_openimages( root_path=root_path, dst_image_path=f'image_{s}', dst_label_filename=f'train_{s}_label.txt', annotation_filename=f'text_spotting_openimages_v5_train_{s}.json', img_start_idx=num_train_imgs, nproc=args.n_proc, ) print('Processing validation set...') convert_openimages( root_path=root_path, dst_image_path='image_val', dst_label_filename='val_label.txt', annotation_filename='text_spotting_openimages_v5_validation.json', img_start_idx=num_train_imgs, nproc=args.n_proc, ) print('Finish') if __name__ == '__main__': main()