#!/usr/bin/env python3 # Copyright (c) OpenMMLab. All rights reserved. import argparse import math import os import os.path as osp from functools import partial import mmcv import numpy as np from mmocr.utils.fileio import list_to_file from PIL import Image def parse_args(): parser = argparse.ArgumentParser( description='Generate training and validation set of TextOCR ' 'by cropping box image.' ) parser.add_argument('root_path', help='Root dir path of TextOCR') parser.add_argument('n_proc', default=1, type=int, help='Number of processes to run') parser.add_argument('--rectify_pose', action='store_true', help='Fix pose of rotated text to make them horizontal') args = parser.parse_args() return args def rectify_image_pose(image, top_left, points): # Points-based heuristics for determining text orientation w.r.t. bounding box points = np.asarray(points).reshape(-1, 2) dist = ((points - np.asarray(top_left)) ** 2).sum(axis=1) left_midpoint = (points[0] + points[-1]) / 2 right_corner_points = ((points - left_midpoint) ** 2).sum(axis=1).argsort()[-2:] right_midpoint = points[right_corner_points].sum(axis=0) / 2 d_x, d_y = abs(right_midpoint - left_midpoint) if dist[0] + dist[-1] <= dist[right_corner_points].sum(): if d_x >= d_y: rot = 0 else: rot = 90 else: if d_x >= d_y: rot = 180 else: rot = -90 if rot: image = image.rotate(rot, expand=True) return image def process_img(args, src_image_root, dst_image_root): # Dirty hack for multiprocessing img_idx, img_info, anns, rectify_pose = args src_img = Image.open(osp.join(src_image_root, img_info['file_name'])) labels = [] for ann_idx, ann in enumerate(anns): text_label = ann['utf8_string'] # Ignore illegible or non-English words if text_label == '.': continue x, y, w, h = ann['bbox'] x, y = max(0, math.floor(x)), max(0, math.floor(y)) w, h = math.ceil(w), math.ceil(h) dst_img = src_img.crop((x, y, x + w, y + h)) if rectify_pose: dst_img = rectify_image_pose(dst_img, (x, y), ann['points']) dst_img_name = f'img_{img_idx}_{ann_idx}.jpg' dst_img_path = osp.join(dst_image_root, dst_img_name) # Preserve JPEG quality dst_img.save(dst_img_path, qtables=src_img.quantization) labels.append(f'{osp.basename(dst_image_root)}/{dst_img_name}' f' {text_label}') src_img.close() return labels def convert_textocr( root_path, dst_image_path, dst_label_filename, annotation_filename, img_start_idx=0, nproc=1, rectify_pose=False ): annotation_path = osp.join(root_path, annotation_filename) if not osp.exists(annotation_path): raise Exception(f'{annotation_path} not exists, please check and try again.') src_image_root = root_path # outputs dst_label_file = osp.join(root_path, dst_label_filename) dst_image_root = osp.join(root_path, dst_image_path) os.makedirs(dst_image_root, exist_ok=True) annotation = mmcv.load(annotation_path) process_img_with_path = partial(process_img, src_image_root=src_image_root, dst_image_root=dst_image_root) tasks = [] for img_idx, img_info in enumerate(annotation['imgs'].values()): ann_ids = annotation['imgToAnns'][img_info['id']] anns = [annotation['anns'][ann_id] for ann_id in ann_ids] tasks.append((img_idx + img_start_idx, img_info, anns, rectify_pose)) labels_list = mmcv.track_parallel_progress(process_img_with_path, tasks, keep_order=True, nproc=nproc) final_labels = [] for label_list in labels_list: final_labels += label_list list_to_file(dst_label_file, final_labels) return len(annotation['imgs']) def main(): args = parse_args() root_path = args.root_path print('Processing training set...') num_train_imgs = convert_textocr( root_path=root_path, dst_image_path='image', dst_label_filename='train_label.txt', annotation_filename='TextOCR_0.1_train.json', nproc=args.n_proc, rectify_pose=args.rectify_pose, ) print('Processing validation set...') convert_textocr( root_path=root_path, dst_image_path='image', dst_label_filename='val_label.txt', annotation_filename='TextOCR_0.1_val.json', img_start_idx=num_train_imgs, nproc=args.n_proc, rectify_pose=args.rectify_pose, ) print('Finish') if __name__ == '__main__': main()