from strhub.models.utils import create_model dependencies = ['torch', 'pytorch_lightning', 'timm'] def parseq_tiny(pretrained: bool = False, decode_ar: bool = True, refine_iters: int = 1, **kwargs): """ PARSeq tiny model (img_size=128x32, patch_size=8x4, d_model=192) @param pretrained: (bool) Use pretrained weights @param decode_ar: (bool) use AR decoding @param refine_iters: (int) number of refinement iterations to use """ return create_model('parseq-tiny', pretrained, decode_ar=decode_ar, refine_iters=refine_iters, **kwargs) def parseq(pretrained: bool = False, decode_ar: bool = True, refine_iters: int = 1, **kwargs): """ PARSeq base model (img_size=128x32, patch_size=8x4, d_model=384) @param pretrained: (bool) Use pretrained weights @param decode_ar: (bool) use AR decoding @param refine_iters: (int) number of refinement iterations to use """ return create_model('parseq', pretrained, decode_ar=decode_ar, refine_iters=refine_iters, **kwargs) def parseq_patch16_224(pretrained: bool = False, decode_ar: bool = True, refine_iters: int = 1, **kwargs): """ PARSeq base model (img_size=224x224, patch_size=16x16, d_model=384) @param pretrained: (bool) Use pretrained weights @param decode_ar: (bool) use AR decoding @param refine_iters: (int) number of refinement iterations to use """ return create_model('parseq-patch16-224', pretrained, decode_ar=decode_ar, refine_iters=refine_iters, **kwargs) def abinet(pretrained: bool = False, iter_size: int = 3, **kwargs): """ ABINet model (img_size=128x32) @param pretrained: (bool) Use pretrained weights @param iter_size: (int) number of refinement iterations to use """ return create_model('abinet', pretrained, iter_size=iter_size, **kwargs) def trba(pretrained: bool = False, **kwargs): """ TRBA model (img_size=128x32) @param pretrained: (bool) Use pretrained weights """ return create_model('trba', pretrained, **kwargs) def vitstr(pretrained: bool = False, **kwargs): """ ViTSTR small model (img_size=128x32, patch_size=8x4, d_model=384) @param pretrained: (bool) Use pretrained weights """ return create_model('vitstr', pretrained, **kwargs) def crnn(pretrained: bool = False, **kwargs): """ CRNN model (img_size=128x32) @param pretrained: (bool) Use pretrained weights """ return create_model('crnn', pretrained, **kwargs)