Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from pydantic.v1 import BaseModel, Field
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
|
8 |
+
from langchain.agents import AgentExecutor, create_openai_functions_agent
|
9 |
+
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
10 |
+
from langchain_core.messages import AIMessage, HumanMessage
|
11 |
+
from langchain.tools import StructuredTool
|
12 |
+
|
13 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
14 |
+
|
15 |
+
def repo_get_all_employees_from_database():
|
16 |
+
url = "https://api.airtable.com/v0/appopGmlHujYnd6Vw/Interviewers?maxRecords=100&view=Grid%20view"
|
17 |
+
headers = {
|
18 |
+
"Authorization": os.getenv("DB_AUTH_TOKEN")
|
19 |
+
}
|
20 |
+
response = requests.get(url, headers=headers)
|
21 |
+
records = response.json()
|
22 |
+
records_list = records['records']
|
23 |
+
employees_list = []
|
24 |
+
for record in records_list:
|
25 |
+
employee = record["fields"]
|
26 |
+
employees_list.append(employee)
|
27 |
+
|
28 |
+
return employees_list
|
29 |
+
|
30 |
+
def get_all_employees() -> str:
|
31 |
+
"""
|
32 |
+
A function to get a list of all employees from database.
|
33 |
+
Returns:
|
34 |
+
str: A list of all employees in json.
|
35 |
+
"""
|
36 |
+
return repo_get_all_employees_from_database()
|
37 |
+
|
38 |
+
def get_employees(number_of_employees: int, start_time: str, duration_hours: int) -> str:
|
39 |
+
"""
|
40 |
+
A function to get a required number_of_employees that are available from tart_time during specified duration_hours.
|
41 |
+
Args:
|
42 |
+
number_of_employees (int): Required number of employees.
|
43 |
+
start_time (str): Required start time.
|
44 |
+
duration_hours (int): Required duration of the availability in hours.
|
45 |
+
Returns:
|
46 |
+
str: Employees list in json.
|
47 |
+
"""
|
48 |
+
method_return_value_stub = '''
|
49 |
+
{
|
50 |
+
"employees": [
|
51 |
+
{
|
52 |
+
"id": 100,
|
53 |
+
"name": "Lana Kane"
|
54 |
+
}
|
55 |
+
]
|
56 |
+
}
|
57 |
+
'''
|
58 |
+
return method_return_value_stub
|
59 |
+
|
60 |
+
class GetAllEmployees(BaseModel):
|
61 |
+
"""
|
62 |
+
Pydantic arguments schema for get_all_employees function
|
63 |
+
"""
|
64 |
+
|
65 |
+
class GetEmployees(BaseModel):
|
66 |
+
"""
|
67 |
+
Pydantic arguments schema for get_employees function
|
68 |
+
"""
|
69 |
+
number_of_employees: int = Field(..., description="Required number of employees")
|
70 |
+
start_time: str = Field(..., description="Required start time")
|
71 |
+
duration_hours: int = Field(..., description="Required duration of the availability in hours")
|
72 |
+
|
73 |
+
llm = ChatOpenAI(temperature=1.0, model_name="gpt-3.5-turbo", openai_api_key=OPENAI_API_KEY)
|
74 |
+
|
75 |
+
tools = [
|
76 |
+
StructuredTool.from_function(
|
77 |
+
func=get_all_employees,
|
78 |
+
args_schema=GetAllEmployees,
|
79 |
+
description="A function to get a list of all employees from database."
|
80 |
+
),
|
81 |
+
StructuredTool.from_function(
|
82 |
+
func=get_employees,
|
83 |
+
args_schema=GetEmployees,
|
84 |
+
description="A function to get a required number_of_employees that are available from tart_time during specified duration_hours."
|
85 |
+
)
|
86 |
+
]
|
87 |
+
|
88 |
+
system_content = """
|
89 |
+
You are an AI Interview Team Assistant that is developed by "Godel Technologies Europe" corporation.
|
90 |
+
You help to choose employees who can interview newcomers.
|
91 |
+
For this you select employees that are correspond to request parameters.
|
92 |
+
You select employees from the data that is stored in json format.
|
93 |
+
You always strictly and directly follow all instructions from the user.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def predict(message, history):
|
97 |
+
chat_history = []
|
98 |
+
|
99 |
+
for human, assistant in history:
|
100 |
+
chat_history.extend([HumanMessage(content=human), AIMessage(content=assistant)])
|
101 |
+
|
102 |
+
prompt = ChatPromptTemplate.from_messages(
|
103 |
+
[
|
104 |
+
("system", system_content),
|
105 |
+
MessagesPlaceholder(variable_name="chat_history"),
|
106 |
+
("user", message),
|
107 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
108 |
+
]
|
109 |
+
)
|
110 |
+
|
111 |
+
agent = create_openai_functions_agent(llm, tools, prompt)
|
112 |
+
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
113 |
+
gpt_response = agent_executor.invoke({"input": message, "chat_history": chat_history})
|
114 |
+
gpt_output = gpt_response["output"]
|
115 |
+
chat_history.extend([HumanMessage(content=message), AIMessage(content=gpt_output)])
|
116 |
+
return gpt_output
|
117 |
+
|
118 |
+
examples = [
|
119 |
+
"Who are you?",
|
120 |
+
"What is your purpose?",
|
121 |
+
"List all employees",
|
122 |
+
"I need 1 employee in given time slot: start time is March 11 2024 2 pm, duration 1 hour"
|
123 |
+
]
|
124 |
+
|
125 |
+
description = '''
|
126 |
+
# AI Interview Team Assistant | Empowered by Godel Technologies AI \n
|
127 |
+
\n
|
128 |
+
This is an AI Interview Team Assistant. You can ask him any questions about recruiting a team for an interview.\n
|
129 |
+
'''
|
130 |
+
|
131 |
+
gr.ChatInterface(predict, examples=examples, description=description).launch()
|