File size: 6,535 Bytes
ed82520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dc4cd8
ed82520
 
0dc4cd8
 
 
 
ed82520
 
 
0dc4cd8
ed82520
 
 
 
0dc4cd8
ed82520
 
 
 
 
 
 
 
 
 
 
0dc4cd8
ed82520
 
 
0dc4cd8
 
ed82520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dc4cd8
ed82520
 
 
 
 
 
 
 
 
 
 
 
0dc4cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import torch
import dlib
import numpy as np
import PIL

# Only used to convert to gray, could do it differently and remove this big dependency
import cv2

from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler

from spiga.inference.config import ModelConfig
from spiga.inference.framework import SPIGAFramework

import matplotlib.pyplot as plt
from matplotlib.path import Path
import matplotlib.patches as patches

# Bounding boxes
face_detector = dlib.get_frontal_face_detector()

# Landmark extraction
spiga_extractor = SPIGAFramework(ModelConfig("300wpublic"))

uncanny_controlnet = ControlNetModel.from_pretrained(
    "multimodalart/uncannyfaces_25K", torch_dtype=torch.float16
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-1-base", controlnet=uncanny_controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

# Generator seed,
generator = torch.manual_seed(0)


def get_bounding_box(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    faces = face_detector(gray)
    if len(faces) == 0:
        raise Exception("No face detected in image")
    face = faces[0]
    bbox = [face.left(), face.top(), face.width(), face.height()]
    return bbox


def get_landmarks(image, bbox):
    features = spiga_extractor.inference(image, [bbox])
    return features['landmarks'][0]


def get_patch(landmarks, color='lime', closed=False):
    contour = landmarks
    ops = [Path.MOVETO] + [Path.LINETO]*(len(contour)-1)
    facecolor = (0, 0, 0, 0)      # Transparent fill color, if open
    if closed:
        contour.append(contour[0])
        ops.append(Path.CLOSEPOLY)
        facecolor = color
    path = Path(contour, ops)
    return patches.PathPatch(path, facecolor=facecolor, edgecolor=color, lw=4)


def conditioning_from_landmarks(landmarks, size=512):
    # Precisely control output image size
    dpi = 72
    fig, ax = plt.subplots(
        1, figsize=[size/dpi, size/dpi], tight_layout={'pad': 0})
    fig.set_dpi(dpi)

    black = np.zeros((size, size, 3))
    ax.imshow(black)

    face_patch = get_patch(landmarks[0:17])
    l_eyebrow = get_patch(landmarks[17:22], color='yellow')
    r_eyebrow = get_patch(landmarks[22:27], color='yellow')
    nose_v = get_patch(landmarks[27:31], color='orange')
    nose_h = get_patch(landmarks[31:36], color='orange')
    l_eye = get_patch(landmarks[36:42], color='magenta', closed=True)
    r_eye = get_patch(landmarks[42:48], color='magenta', closed=True)
    outer_lips = get_patch(landmarks[48:60], color='cyan', closed=True)
    inner_lips = get_patch(landmarks[60:68], color='blue', closed=True)

    ax.add_patch(face_patch)
    ax.add_patch(l_eyebrow)
    ax.add_patch(r_eyebrow)
    ax.add_patch(nose_v)
    ax.add_patch(nose_h)
    ax.add_patch(l_eye)
    ax.add_patch(r_eye)
    ax.add_patch(outer_lips)
    ax.add_patch(inner_lips)

    plt.axis('off')
    fig.canvas.draw()
    buffer, (width, height) = fig.canvas.print_to_buffer()
    assert width == height
    assert width == size
    buffer = np.frombuffer(buffer, np.uint8).reshape((height, width, 4))
    buffer = buffer[:, :, 0:3]
    plt.close(fig)
    return PIL.Image.fromarray(buffer)


def get_conditioning(image):
    # Steps: convert to BGR and then:
    # - Retrieve bounding box using `dlib`
    # - Obtain landmarks using `spiga`
    # - Create conditioning image with custom `matplotlib` code
    # TODO: error if bbox is too small
    image.thumbnail((512, 512))
    image = np.array(image)
    image = image[:, :, ::-1]
    bbox = get_bounding_box(image)
    landmarks = get_landmarks(image, bbox)
    spiga_seg = conditioning_from_landmarks(landmarks)
    return spiga_seg


def generate_images(image, prompt, image_video=None):
    if image is None and image_video is None:
        raise gr.Error("Please provide an image")
    if image_video is not None:
        image = image_video
    try:
        conditioning = get_conditioning(image)
        output = pipe(
            prompt,
            conditioning,
            generator=generator,
            num_images_per_prompt=3,
            num_inference_steps=20,
        )
        return [conditioning] + output.images
    except Exception as e:
        raise gr.Error(str(e))


def toggle(choice):
    if choice == "webcam":
        return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
    else:
        return gr.update(visible=False, value=None), gr.update(visible=True, value=None)


with gr.Blocks() as blocks:
    gr.Markdown("""
        ## Generate controlled outputs with ControlNet and Stable Diffusion.
        This Space uses a custom visualization based on SPIGA face landmarks for conditioning.
    """)
    with gr.Row():
        with gr.Column():
            image_or_file_opt = gr.Radio(["file", "webcam"], value="file",
                                         label="How would you like to upload your image?")
            image_in_video = gr.Image(
                source="webcam", type="pil", visible=False)
            image_in_img = gr.Image(
                source="upload", visible=True, type="pil")
            image_or_file_opt.change(fn=toggle, inputs=[image_or_file_opt],
                                     outputs=[image_in_video, image_in_img], queue=False)
            prompt = gr.Textbox(
                label="Enter your prompt",
                max_lines=1,
                placeholder="best quality, extremely detailed",
            )
            run_button = gr.Button("Generate")
        with gr.Column():
            gallery = gr.Gallery().style(grid=[2], height="auto")
    run_button.click(fn=generate_images,
                     inputs=[image_in_img, prompt, image_in_video],
                     outputs=[gallery])
    gr.Examples(fn=generate_images,
                examples=[
                    ["./examples/pedro-512.jpg",
                        "Highly detailed photograph of young woman smiling, with palm trees in the background"],
                    ["./examples/image1.jpg",
                        "Highly detailed photograph of a scary clown"],
                    ["./examples/image0.jpg",
                        "Highly detailed photograph of Barack Obama"],
                ],
                inputs=[image_in_img, prompt],
                outputs=[gallery],
                cache_examples=True)

blocks.launch()